Optical imaging with microarcsecond resolution will reveal details across and outside stellar surfaces but requires kilometer-scale interferometers, challenging to realize either on the ground or in space. Intensity interferometry, electronically connecting independent telescopes, has a noise budget that relates to the electronic time resolution, circumventing issues of atmospheric turbulence. Extents up to a few km are becoming realistic with arrays of optical air Cherenkov telescopes (primarily erected for gamma-ray studies), enabling an optical equivalent of radio interferometer arrays. Pioneered by Hanbury Brown and Twiss, digital versions of the technique have now been demonstrated, reconstructing diffraction-limited images from laboratory measurements over hundreds of optical baselines. This review outlines the method from its beginnings, describes current experiments, and sketches prospects for future observations.
A long-held astronomical vision is to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, show their evolution over time, and reveal interactions of stellar winds and gas flows in binary star systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and used also for intensity interferometry. With no optical connection between the telescopes, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are on the order of one meter, making the method practically insensitive to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Theoretical modeling has shown how stellar surface images can be retrieved from such observations and here we report on experimental simulations. In an optical laboratory, artificial stars (single and double, round and elliptic) are observed by an array of telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations are cross correlated between up to a hundred baselines between pairs of telescopes, producing maps of the second-order spatial coherence across the interferometric Fourier-transform plane. These experiments serve to verify the concepts and to optimize the instrumentation and observing procedures for future observations with (in particular) CTA, the Cherenkov Telescope Array, aiming at order-of-magnitude improvements of the angular resolution in optical astronomy.
Intensity interferometry permits very long optical baselines and the observation of sub-milliarcsecond structures. Using
planned kilometric arrays of air Cherenkov telescopes at short wavelengths, intensity interferometry may increase the
spatial resolution achieved in optical astronomy by an order of magnitude, inviting detailed studies of the shapes of
rapidly rotating hot stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial
pulsations across stellar surfaces. Signal-to-noise in intensity interferometry favors high-temperature sources and
emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral
continuum. Prime candidate sources have been identified among classes of bright and hot stars. Observations are
simulated for telescope configurations envisioned for large Cherenkov facilities, synthesizing numerous optical baselines
in software, confirming that resolutions of tens of microarcseconds are feasible for numerous astrophysical targets.
Sub milli-arcsecond imaging in the visible band will provide a new perspective in stellar astrophysics. Even
though stellar intensity interferometry was abandoned more than 40 years ago, it is capable of imaging and
thus accomplishing more than the measurement of stellar diameters as was previously thought. Various phase
retrieval techniques can be used to reconstruct actual images provided a sufficient coverage of the interferometric
plane is available. Planned large arrays of Air Cherenkov telescopes will provide thousands of simultaneously
available baselines ranging from a few tens of meters to over a kilometer, thus making imaging possible with
unprecedented angular resolution. Here we investigate the imaging capabilities of arrays such as CTA or AGIS
used as Stellar Intensity Interferometry receivers. The study makes use of simulated data as could realistically
be obtained from these arrays. A Cauchy-Riemann based phase recovery allows the reconstruction of images
which can be compared to the pristine image for which the data were simulated. This is first done for uniform
disk stars with different radii and corresponding to various exposure times, and we find that the uncertainty
in reconstructing radii is a few percent after a few hours of exposure time. Finally, more complex images are
considered, showing that imaging at the sub-milli-arc-second scale is possible.
Kilometric-scale optical imagers seem feasible to realize by intensity interferometry, using telescopes primarily
erected for measuring Cherenkov light induced by gamma rays. Planned arrays envision 50-100 telescopes, distributed
over some 1-4 km2. Although array layouts and telescope sizes will primarily be chosen for gamma-ray
observations, also their interferometric performance may be optimized. Observations of stellar objects were numerically
simulated for different array geometries, yielding signal-to-noise ratios for different Fourier components
of the source images in the interferometric (u, v)-plane. Simulations were made for layouts actually proposed for
future Cherenkov telescope arrays, and for subsets with only a fraction of the telescopes. All large arrays provide
dense sampling of the (u, v)-plane due to the sheer number of telescopes, irrespective of their geographic orientation
or stellar coordinates. However, for improved coverage of the (u, v)-plane and a wider variety of baselines (enabling better image reconstruction), an exact east-west grid should be avoided for the numerous smaller telescopes, and repetitive geometric patterns avoided for the few large ones. Sparse arrays become severely limited by a lack of short baselines, and to cover astrophysically relevant dimensions between 0.1-3 milliarcseconds in visible wavelengths, baselines between pairs of telescopes should cover the whole interval 30-2000 m.
Stephan LeBohec, Ben Adams, Isobel Bond, Stella Bradbury, Dainis Dravins, Hannes Jensen, David Kieda, Derrick Kress, Edward Munford, Paul Nuñez, Ryan Price, Erez Ribak, Joachim Rose, Harold Simpson, Jeremy Smith
Experiments are in progress to prepare for intensity interferometry with arrays of air Cherenkov
telescopes. At the Bonneville Seabase site, near Salt Lake City, a testbed observatory has been set
up with two 3-m air Cherenkov telescopes on a 23-m baseline. Cameras are being constructed, with
control electronics for either off- or online analysis of the data. At the Lund Observatory (Sweden),
in Technion (Israel) and at the University of Utah (USA), laboratory intensity interferometers simulating stellar observations have been set up and experiments are in progress, using various analog and digital correlators, reaching 1.4 ns time resolution, to analyze signals from pairs of laboratory telescopes.
Building on technological developments over the last 35 years, intensity interferometry now appears a feasible option by which to achieve diffraction-limited imaging over a square-kilometer synthetic aperture. Upcoming Atmospheric Cherenkov Telescope projects will consist of up to 100 telescopes, each with ~100m2 of light gathering area, and distributed over ~1km2. These large facilities will offer thousands of baselines from 50m to more than 1km and an unprecedented (u,v) plane coverage. The revival of interest in Intensity Interferometry has recently led to the formation of a IAU working group. Here we report on various ongoing efforts towards implementing modern Stellar Intensity Interferometry.
Much of the progress in astronomy follows imaging with improved resolution. In observing stars, current capabilities
are only marginal in beginning to image the disks of a few, although many stars will appear as surface objects for
baselines of hundreds of meters. Since atmospheric turbulence makes ground-based phase interferometry challenging
for such long baselines, kilometric space telescope clusters have been proposed for imaging stellar surface details. The
realization of such projects remains uncertain, but comparable imaging could be realized by ground-based intensity
interferometry. While insensitive to atmospheric turbulence and imperfections in telescope optics, the method requires
large flux collectors, such as being set up as arrays of atmospheric Cherenkov telescopes for studying energetic gamma
rays. High-speed detectors and digital signal handling enable very many baselines to be synthesized between pairs of
telescopes, while stars may be tracked across the sky by electronic time delays. First observations with digitally
combined optical instruments have now been made with pairs of 12-meter telescopes of the VERITAS array in Arizona.
Observing at short wavelengths adds no problems, and similar techniques on an extremely large telescope could achieve
diffraction-limited imaging down to the atmospheric cutoff, achieving a spatial resolution significantly superior by that
feasible by adaptive optics operating in the red or near-infrared.
In the great majority of the cases, present astronomical observations are realized
analyzing only first order spatial or temporal coherence properties of the
collected photon stream. However, a lot of information is "hidden" in the second
and higher order coherence terms, as details about a possible stimulated emission
mechanism or about photon scattering along the travel from the emitter to the
telescope. The Extremely Large Telescopes of the future could provide the high
photon flux needed to extract this information. To this aim we have recently
studied a possible focal plane instrument, named QuantEYE, for the 100 m
OverWhelmingly Large Telescope of the European Southern Observatory. This
instrument is the fastest photon counting photometer ever conceived, with an array
of 100 parallel channels operating simultaneously, to push the time tagging
capabilities toward the pico-second region. To acquire some experience with this
novel type of instrumentation, we are now in the process of realizing a small
instrument prototype (AquEYE) for the Asiago 182 cm telescope, for then building a
larger instrument for one of the existing 8-10 m class telescopes. We hope that the
results we will obtain by these instruments will open a new frontier in the
astronomical observations.
We have carried out a conceptual study for an instrument (QuantEYE) capable to detect and measure photon-stream statistics, e.g. power spectra or autocorrelation functions. Such functions increase with the square of the detected signal, implying an enormously increased sensitivity at the future Extremely Large Telescopes, such as the OverWhelmingly Large (OWL) telescope of the European Southern Observatory (ESO). Furthermore, QuantEYE will have the capability of exploring astrophysical variability on microsecond and nanosecond scales, down to the quantum-optical limit. Expected observable phenomena include instabilities of photon-gas bubbles in accretion flows, p-mode oscillations in neutron stars, and quantum-optical photon bunching in time. This paper describes QuantEYE, an instrument aimed to realize the just described science, proposed for installation at the ESO OWL telescope focal plane. The adopted optical solution is relatively simple and possible with actual technologies, the main constraint essentially being the present limited availability of very fast photon counting detector arrays. Also some possible alternative designs are described, assuming a future technology development of fast photon counting detector arrays.
Extremely large filled-aperture ground-based optical-IR telescopes, or ELTs, ranging from 20 to 100m in diameter, are now being proposed. The all-important choice of the aperture must clearly be driven by the potential science offered. We here highlight science goals from the Leiden Workshop in May 2001 suggesting that for certain critical observations the largest possible aperture - assumed to be 100m (the proposed European OverWhelmingly Large telescope (OWL) - is strongly to be desired. Examples from a long list include:
COSMOLOGY:
* Identifying the first sources of ionisation in the universe, out to z ≥14
* Identifying and stufdying the first generation of dusty galaxies
* More speculatively, observing the formation of the laws of physics, via the evolution of the fundamental physical contants in the very early Universe, by high-resolution spectroscopy of very distant quasars.
NEARER GALAXIES:
*Determining detailed star-formation histories of galaxies out to the Virtgo Cluster, and hence for all major galaxy types (not just those available close to the Local Group of galaxies).
THE SOLAR SYSTEM: A 100-m telescope would do the work of a flotilla of fly-by space probes for investigations ranging from the evolution of planetary sutfaces and atmospheres to detailed surface spectroscopy of Kuiper Belt Objects. (Such studies could easily occupy it full-time.)
EARTHLIKE PLANETS OF NEARBY STARS: A propsect so exciting as perhaps to justify the 100-m telescope on its own, is that of the direct detection of earthlike planets of solar-type stars by imaging, out to at least 25 parsecs (80 light years) from the sun, followed by spectroscopic and photometric searches for the signature of life on the surfaces of nearer examples.
Photon-counting silicon avalanche photo-diodes (APDs) offer very high quantum efficiency, and might eventually replace photocathode detectors in high-speed photometry of astronomical objects. Laboratory studies have been performed on both passively and actively quenched APDs. Peculiarities of APDs include that the dark signal may exhibit bistability, with the count rate jumping between discrete levels. Following any photon detection, the detector itself emits some light, which might be confusing under certain conditions. Deadtimes and after pulsing properties appear favorable, but the small physical size of APDs causes challenges in optically matching them to the entrance pupils of large telescopes.
Instrumentation and observing methods are being developed for a program in optical high-speed astrophysics, an exploratory project entering the domains of milli-, micro-, and nanosecond variability. Current studies include accretion flows around compact objects, stellar scintillation, and astronomical quantum optics. To study such rapid phenomena is not possible everywhere in the spectrum (e.g., X-ray studies are constrained by the photon count rates feasible with current spacecraft). The ground- based optical is a promising region, for which we have constructed a dedicated instrument, QVANTOS ('Quantum-Optical Spectrometer'). It was designed for real-time handling of large amounts of data, for observing also faint sources, and with a time resolution that can be extended to reveal quantum properties of light, such as the bunching of photons in time. Its first version was used to study atmospheric scintillation on timescales between 100 milli- and 100 nsec, utilizing some 25 full nights at a telescope on La Palma (Canary Islands). An understanding of the atmosphere is required to segregate astrophysical variability from terrestial effects, and to find optimal observing strategies. For very high time resolution, light curves are of little use, and statistical functions of variability have to be measured. The noise in such functions decreases dramatically with increased light collecting power, making very large telescopes much more sensitive for the study of rapid variability than ordinary-sized ones.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.