We present the fabrication and characterisation of Dy3+-doped tellurite glasses and waveguides for applications in the mid-IR. The low phonon energy and large rare-earth ion solubility of tellurite glasses, as well as having infrared transmission ranges up to <5 μm, make them promising candidates for new mid-IR solid-state laser host materials. This paper presents recent achievements in the fabrication of tellurite glasses, glass characterisation and rare-earth ion spectroscopy which is compared to other glass hosts relevant to the mid-IR such as fluoride glasses. When excited with an 808 nm laser diode source, Dy3+ doped tellurite bulk glasses exhibited very broad fluorescence from the 6H13/2 - 6H15/2 transition which extends from 3 μm to 3.6 μm FWHM compared to 2.9 μm to 3.1 μm in Dy3+ doped ZBLAN glass. This broad and red-shifted fluorescence band in tellurite glass may find use in LIDAR and sensing applications as it coincides with an atmospheric transmission band, compared to the ~3 μm emission of Dy3+ doped ZBLAN lasers which is
absorbed by atmospheric water.
The invited paper explains the transmission properties of a range of near-, mid-, and far-IR optical fibres for their
applications in chemical and biological sensing. Methods for the fabrication of single and multiple-core mid-IR fibres are
discussed in view of controlling the thermal and viscosity properties for fibre drawing. In particular, the need for
removing impurity bands in the 5000 to 1000 cm-1 range is explained. The importance of engineering multi-core fibres
is also discussed for simultaneous measurements of Raman, IR and surface plasmon enhanced modes together with say,
temperature using a mid-IR transmitting tellurite fibre e.g. in a chemical process. The paper explains the principles and
advantages of evanescent wave coupling of light at the resonant frequency bands for chemical sensing using a fibre
evanescent wave spectroscopic sensor having a GeTeSe chalcogenide fibre. Using fibre based techniques, measurements
for Cr6+ ions in solution and As3+ and As5+ in solids have been characterized at visible and mid-IR regions, respectively.
In this paper we also explain the importance of using mid-IR fibres for engineering novel laser and broadband sources
for chemical sensing.
We present efficient CW lasing Tm3+/Ho3+/Yb3+-triply-doped tellurite fibre at ~2.1 μm. Two different pump schemes
have been demonstrated for this laser: a 1.088 μm
Yb3+-doped silica fibre laser simultaneously pumping the Tm3+: 3H5,
Ho3+: 5I6 and Yb3+: 2F5/2 levels, and a 1.6 μm
Er3+/Yb3+-doped silica fibre laser directly pumping the Tm3+: 3F4 level. For
the 1.6 μm pumping, a slope efficiency of 62% has been achieved in a 76 cm long fibre which is close to the Stokes
efficiency limit of ~75%. An output power of 160 mW has also been achieved, but with no signs of saturation or fibre
damage suggesting that higher output powers should be possible. For the 1.088 μm pumping there is very strong pump
ESA resulting in bright blue (480 nm) and near-IR (800 nm) fluorescence due to the 1G4 → 3H6 and 3H4 →
3H6
transitions of Tm3+, respectively, and this limits the achievable slope efficiency, which in this case was a maximum of
25% for a 17 cm long fibre. With this pump scheme, the highest observed output power was 60 mW, and further power
scaling was limited due to the intense ESA and thermal damage to the pump end of the fibre. We also present results on
the active Q-switching of the 1.6 μm pumped fibre laser using a mechanical chopper operating at 19.4 kHz. Average
powers of 26 mW and pulse energies of 0.65 μJ were measured with pulse widths in the range 100-160 ns.
Near- and mid-infrared fibre lasers find many applications in areas such as remote and chemical sensing, lidar and
medicine, and tellurite fibres offer advantages over other common fibre glasses such a lower phonon energy and higher
rare-earth ion solubility than silicate glasses, and greater chemical and environmental stability than fluoride glasses. Rate
equation modelling is a very useful tool for the characterisation and performance prediction of new rare earth transitions
in these novel fibre materials. We present the numerical rate equation modelling results for a ~2 μm Tm3+-doped tellurite
fibre laser when pumped with a 1.6 μm Er3+/Yb3+-doped double-clad silica fibre laser. A maximum slope efficiency of
76% with respect to launched pump power was achieved in the experimental fibre laser set up with a 32 cm long fibre.
The high slope efficiency is very close to the Stokes efficiency limit of ~82% which is due to the in-band pumping
scheme employed and the lack of pump excited state absorption. The two-level rate equations involving absorption and
emission between the Tm3+: 3H6 and 3F4 levels have been solved iteratively using a fourth-order Runge-Kutta algorithm
and the results compared with the experimental results. For the 32 cm fibre with output coupler reflectivities of 12%,
50%, 70% and 90%, the respective theoretical slope efficiencies of 73%, 64%, 53% and 29% are in very good agreement
with the experimentally measured values of 76%, 60%, 48% and 33%.
The first demonstration of a pulsed Nd:YCOB laser at 1060 nm is reported, with results for both gain switching and Qswitching
presented. Active Q-switching is achieved using the spinning disc technique pulses of 50 ns duration with
pulse energies up to 0.6 mJ are obtained. Optimisation is performed for both pulse energy and slope efficiency of the
laser. A Q-switched slope efficiency of 56% is achieved.
Various lengths of Yb:Er:YVO4 were end pumped by a quasi-continuous wave 967 nm diode laser. The best slope
efficiency with respect to absorbed pump power for gain switched operation was 8 % for a 5 mm long crystal.
Co:MgAl2O4 saturable absorbers of 98 % and 93 % initial transmission were used to passively Q-switch the cavity. For
the 98 % initial transmission absorber, average pulses energies of 44 µJ were measured. The average pulse width and
repetition rate were ~256 ns and 36 kHz, respectively. For the 93% initial transmission absorber, a single output pulse of
37 µJ energy and 22 ns duration per pump pulse was measured when the crystal was pumped for a pumping duration of
1.7 ms.
We report the active Q-switching of a Yb:Er:YVO4 laser for the first time. A Yb:Er:YVO4 crystal was end pumped by a
quasi-continuous wave laser diode emitting at 967 nm with a peak power of up to 48 W. The laser cavity was actively Qswitched
using the spinning disc technique. At a repetition rate of 19.2 kHz, the Q-switched slope efficiency and
threshold were 4 % and 62 mJ respectively. In comparison, the same system had a slope efficiency of 5% and a threshold
of 75 mJ without mechanical Q-switching. Single pulse of energy up to 90 μJ and duration as short as 110 ns were
obtained for the single output pulse per pump pulse operation.
We report a Tm3+/Yb3+-doped tellurite fibre laser operating at wavelengths in the range 1879 - 1994 nm. Two different pump schemes have been demonstrated for this laser: a 1088 nm Yb3+-doped silica fibre laser simultaneously pumping the Tm3+: 3H5 and Yb3+: 2F5/2 levels, and a 1610 nm Er3+/Yb3+-doped silica fibre laser directly pumping the Tm3+: 3F4 upper laser level. For the 1610 nm pumping, a slope efficiency of 76% has been achieved in a 32 cm long fibre which is very close to the Stoke efficiency limit of ~80%. An output power of 283 mW has also been achieved, but with no signs of saturation or fibre damage suggesting that higher output powers should be possible. For the 1088 nm pumping there is very strong pump ESA resulting in bright blue (480 nm) and near-IR (800 nm) emission and this limits the achievable slope efficiency, which in this case was a maximum of 10% for a 16 cm long fibre. With this pump scheme, the highest observed output power was 67 mW, and further power scaling was limited due to the intense ESA and thermal damage to the pump end of the fibre. Lasing has been achieved in <10 cm lengths of this fibre making this material a promising candidate for ultra compact medium power mid-IR laser sources for range-finding, medical and atmospheric monitoring and sensing applications.
Intracavity second harmonic generation (ISHG) of a continuous wave, diode-pumped, broadband Yb-doped fibre laser has been investigated. Frequency doubling of the fibre output and of the residual diode pump light, and sum frequency mixing (SFM) between the fibre output and the pump light were achieved simultaneously, resulting in three colour operation in the blue-green region.
Quantum dots have significant potential as photosensitizers with a range of possible surface structures and a variety of materials available. Quantum dots composed of a cadmium selenide (CdSe) core and a cadmium sulfide (CdS) shell have been combined with poly(N-vinylcarbazole) and electro-optic dye molecules to form a new photorefractive composite. The photorefractive nature of the material was demonstrated with a gain of 4 cm-1 in s-polarized asymmetric two-beam coupling. The photosensitizing ability of CdS nanoparticles in a photorefractive polymer composite has been previously only evident for larger applied fields. The diffraction efficiency of the current composite is a vast improvement over the quantum dot composite reported previously, with degenerate four-wave mixing yielding diffraction of 1.3% at 70V/μm. Analysis of the field-dependence of the space-charge field rise time reveals a zero-field dissociation efficiency of (3.6+/-0.5)x10-5. Other example quantum dot sensitizers are also under investigation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.