We present a novel method of etching lithium niobate during the Ti diffusion process. A hypothesis for this etching process is explained by defining the kinetics of the Ti diffusion process as an electrochemical reaction. The Ti ions diffuse into the X cut LiNbO3 crystal by swapping with Nb ions generating an electric field. Investigations were carried out by placing a bare LiNbO3 wafer on top of the Ti patterned LiNbO3 substrate during the diffusion process in a wet oxygen atmosphere. The built-in electric field during the Ti diffusion process is neutralised with the bare LiNbO3 placed on top and is evident from the material removal that takes place from the top bare substrate and deposited on the bottom substrate were Ti is diffused. Hence the bare substrate is etched in the regions where Ti is present on the bottom substrate. Features can be arbitrarily defined (using Ti etching) and can have dimensions of 1 micron or smaller. Etch depths of the order of 1 micron have been demonstrated while maintaining smooth surfaces. The crystalline nature of the etched surface is analysed using X-ray diffraction techniques. The refractive index measurement and the surface roughness of the etched surface are also presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.