KEYWORDS: Organisms, Microscopes, Tomography, Algorithm development, 3D modeling, Detection and tracking algorithms, 3D tracking, 3D image processing, Reconstruction algorithms, Muscles
It is challenging to study behavior of and track freely-moving model organisms using conventional 3D microscopy techniques. To overcome motion artifacts and prevent the organism from leaving the field of view (FOV), existing techniques require paralyzing or otherwise immobilizing the organism. Here, we demonstrate hemispheric Fourier light field tomography, featuring a parabolic objective that enables synchronized multi-view fluorescence imaging over ~2pi steradians at up to 120 fps and across multi-millimeter 3D FOVs. Our method is not only able to track the 6D pose of freely-moving zebrafish and fruit fly larvae, but also other properties such as heartbeat, fin motion, jaw motion, and muscle contractions. We also demonstrate simultaneous multi-organism imaging.
We present a high-throughput computational imaging system capable of performing dense, volumetric fluorescence imaging of freely moving organisms at up to 120 volumes per second. Our method, termed 2pi Fourier light field tomography (2pi-FLIFT), consists of a planar array of 54 cameras and a parabolic mirror serving as the primary objective that allows for synchronized multi-view video capture over ~2pi steradians. 2pi-FLIFT features a novel 3D reconstruction algorithm that recovers both the 3D fluorescence distribution and attenuation map of dynamic samples. We demonstrate 2pi-FLIFT on important, freely moving model organisms, such as zebrafish and fruit fly larvae.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.