We have proposed a concept of monitoring ice ball formation in biological tissues during cryodestruction process via spatially-resolved detection of elastic light backscattering. For this purpose, we developed an experimental setup for study cryodestruction by using applicators based on sapphire shaped crystals with internal channels for optical irradiation of biotissues and detection of backscattered light. Due to the unique physical properties of sapphire, i.e. high thermal, mechanical, and chemical strength, high thermal conductivity and optical transparency, the sapphire cryoapplicators yield combination of the tissue cryodestruction with the optical control of tissue freezing. We have shown experimentally that using the proposed concept of applicator with several channels, it is possible to monitor changes of the ice ball during the cryodestruction process.
We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes – i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.
We have developed cryo-applicators based on the sapphire shaped crystals fabricated using the edge-defined film-fed growth (EFG) and noncapillary shaping (NCS) techniques. Due to the unique physical properties of sapphire: i.e. high thermal, mechanical, and chemical strength, impressive thermal conductivity and optical transparency, these cryo-applicators yield combination of the tissue cryo-destruction with its exposure to laser radiation for controlling the thermal regimes of cryosurgery, and with the optical diagnosis of tissue freezing. We have applied the proposed sapphire cryo-applicators for the destruction of tissues in vitro. The observed results highlight the prospectives of the sapphire cryo-applicators in cryosurgery.
In this paper, we demonstrate instruments for laser radiation delivery based on sapphire capillary needles. Such sapphire irradiators (introducers) can be used for various medical applications, such as photodynamic therapy, laser hyperthermia, laser interstitial thermal therapy, and ablation of tumors of various organs. Unique properties of sapphire allow for effective redistribution of the heat, generated in biological tissues during their exposure to laser radiation. This leads to homogeneous distribution of the laser irradiation around the needle, and lower possibility of formation of the overheating focuses, as well as the following non-transparent thrombi.
In this paper, a handheld contact probe based on sapphire shaped crystal was developed for the intraoperative optical diagnosis and aspiration of malignant brain tissue combined with the laser hemostasis. Such a favorable combination of several functions in a single instrument significantly increases its clinical relevance. It makes possible highly-accurate real-time detection and removal of either large-scale malignancies or even separate invasive cancer cells. The proposed neuroprobe was integrated into the clinical neurosurgical workflow for the intraoperative fluorescence identification and removal of malignant tissues of the brain.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.