Antibiotic resistance has posed a grand and rising threat to the global health. Blue light, specifically 400-430 nm range, has been shown as an attractive antimicrobial alternative considering its drug/agent-free nature, broad-spectrum antimicrobial effect, and no reported resistance. However, its clinical applications have been hampered by several major bottlenecks. Here, we present our translational development towards clinical application of blue light for managing wound infections via innovations in establishing a safe, effective treatment regimen built upon bacteriostatic and long-term illumination strategy (with therapeutical window identified between minimum inhibitory irradiance, MII, and maximum permissible irradiance, MPI), a wearable LED array-based device prototype, an in vivo testbed of free-moving rats with skin wound infections, and its integration with standard wound care procedures. These concepts, devices, safety, and effectiveness have been validated in vitro, ex vivo, and in vivo. This work paves a solid yet encouraging foundation for our follow-up clinical study on contaminated/infected wounds.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.