We demonstrate video-rate spontaneous Raman imaging by combining lightsheet microscopy that harnesses non-diffracting Airy beams to efficiently illuminate large specimen regions with image acquisition and reconstruction at the subphoton per pixel levels. We validated these benefits by imaging a wide variety of samples, including organic materials and the metabolic activity of single living yeast cells. Overall, our method not only enables video-rate imaging rates, but also requires 1000-fold less irradiance levels than state-of-the-art coherent Raman microscopy. As such, we expect this approach will greatly accelerate the reliability and reproducibility of Raman imaging in both fundamental research and clinical applications.
We demonstrate a full-Stokes integrated polarimeter based on the circular photogalvainc effect in TaAs Weyl semimetal. Our work could enable a new class of compact and broadband polarization sensitive optoelectronic devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.