This paper describes the key design features and performance of HARP, an innovative heterodyne focal-plane array
receiver designed and built to operate in the submillimetre on the James Clerk Maxwell Telescope (JCMT) in Hawaii.
The 4x4 element array uses SIS detectors, and is the first sub-millimetre spectral imaging system on the JCMT. HARP
provides 3-dimensional imaging capability with high sensitivity at 325-375 GHz and affords significantly improved
productivity in terms of speed of mapping. HARP was designed and built as a collaborative project between the
Cavendish Astrophysics Group in Cambridge UK, the UK-Astronomy Technology Centre in Edinburgh UK, the
Herzberg Institute of Astrophysics in Canada and the Joint Astronomy Centre in Hawaii. SIS devices for the mixers were
fabricated to a Cavendish Astrophysics Group design at the Delft University of Technology in the Netherlands. Working
in conjunction with the new Auto Correlation Spectral Imaging System (ACSIS), first light with HARP was achieved in
December 2005. HARP synthesizes a number of interesting features across all elements of the design; we present key
performance characteristics and images of astronomical observations obtained during commissioning.
A 350GHz 4 × 4 element heterodyne focal plane array using SIS detectors is presently being constructed for the JCMT. The construction is being carried out by a collaborative group led by the MRAO, part of the Astrophysics Group, Cavendish Laboratory, in conjunction with the UK-Astronomy Technology Centre (UK-ATC), The Herzberg Institute of Astrophysics (HIA) and the Joint Astronomy Center (JAC). The Delft Institute of Microelectronics & Sub-micron Technology (DIMES) is fabricating junctions for the SIS mixers that have been designed at MRAO.
Working in conjunction with the 'ACSIS' correlator & imaging system, HARP-B will provide 3-dimensional imaging capability with high sensitivity at 325 to 375GHz. This will be the first sub-mm spectral imaging system on JCMT - complementing the continuum imaging capability of SCUBA - and affording significantly improved productivity in terms of speed of mapping. The core specification for the array is that the combination of the receiver noise temperature and beam efficiency, weighted optimally across the array will be <330K SSB for the central 20GHz of the tuning range.
In technological terms, HARP-B synthesizes a number of interesting and innovative features across all elements of the design. This paper presents both a technical and organizational overview of the HARP-B project and gives a description of all of the key design features of the instrument. 'First light' on the instrument is currently anticipated in spring 2004.
We present a physical optics analysis of the Heterodyne Array Receiver Program B-band (HARP-B) receiver for the James Clerk Maxwell Telescope (JCMT). Three sets of calculations are performed:
1. A Gaussian beam analysis to determine grid sizes for the Mach-Zehnder polarising interferometer. It is shown that an optimum grid size of 150mm clear diameter has little effect on the beam pattern and transmission of power through the system.
2. A Model of the HARP-B Imaging array is created using an ideal beam pattern for the corrugated feed. This produces an accurate beam pattern of minimal distortion.
3. The throughput and beam patterns for the whole HARP-B system are calculated. This produced beam patterns showing a high degree of symmetry with acceptable power coupling to the reflectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.