This study presents how sequential infiltration synthesis of trimethyl aluminium and water into a carbohydrate-based block copolymer was used to enable pattern transfer of 6 nm half-pitch horizontal cylinders into silicon. Specular neutron reflectometry measurements of poly(styrene)-block-maltoheptaose self-assembled into horizontal cylinders indicate an increasing content of alumina after each sequential infiltration cycle, comparing 0, 1, 2, and 4 cycles, with alumina content reaching 2.4 vol% after four infiltrations cycles. Dry etching processes in inductively coupled plasma reactive ion etching for sub-10 nm patterns were developed, using a two-step technique: O2-plasma for polymer removal and a reactive ion etching of Si using a mixture of SF6 and C4F8 gases. Etch selectivity of more than 2:1 of silicon over alumina-like etch mask material was achieved. To evaluate the etching process, the etched Si structures were measured and characterized by scanning electron microscopy. These results are expected to be of use for nanofabrication and applications in the sub-10 nm regime.
Gold nanoelectrodes with gaps of less than 10 nm were formed by conventional E-beam lithography on silicon substrates covered by Al2O3. Molecular films were deposited on the electrodes by Langmuir-Shaefer technique. The I-V curves of such systems show a suppressed conductance indicating a correlated electron tunnelling through the system. All measurements were made at room temperature.
Nanoimprint lithography over 2 inch wafers with a patterned area of 40,000 micrometer squared consisting of interdigitated lines of 100 nm width with varying distance between the lines has been performed. By performing metal lift-off and subsequent UV-lithography for definition of contact regions and pads, complete metal arrays have been fabricated. The structure is electrically characterized by admittance spectroscopy. In this paper we describe the design and realization of a compact nanoimprint lithography system. Furthermore, various aspects of nanoimprint lithography are discussed, and nanoimprint lithography is compared with other nanostructuring technologies.
Quantum well wire structures in metalorganic vapor phase epitaxy (MOVPE) grown Ga.53In.47As/InP and in Ga.85In.15As/GaAs have been fabricated by electron beam lithography and subsequent metalorganic reactive ion etching (MORIE) and/or wet etching. The dry etching was optimized for low-damage conditions and for mask-to-wafer pattern transfer. In the wet etching process, an underetching was implemented in order to reduce the linewidth defined by the etching mask. A wet etching step has been used after the dry etching for removal of the partly damaged surface region and for smoothing of the sidewalls of the wires. Differently processed areas were excited selectively by low- temperature cathodoluminescence (CL) from which the optical quality of the wire material was evaluated and blue shifts for the wires as large as 10 meV were observed. Individual wires have also been imaged and effects of one-dimensional exciton diffusion have been probed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.