We introduce MKIDGen3, a scalable and cost-efficient RFSoC-based readout system for UVOIR-sensitive Microwave Kinetic Inductance Detectors (MKIDs). MKIDGen3 not only doubles readout bandwidth, but also reduces power consumption and costs by 80% and 50%, respectively. The system features a central control node which facilitates array-level setup, data storage, image synthesis, and UI server functionality connected to a cluster of of low-cost RFSoC boards, each responsible for a 2 kilopixel sub-array. This open-source platform is tailored for smaller research groups lacking dedicated FPGA staff, offering ease of maintenance and adaptability. A notable innovation in MKIDGen3 is its system-level performance simulator, designed to eliminate guesswork in the development of optical MKID readouts and facilitating informed decision-making for DSP and device setup algorithms, a significant advancement. We discuss the development and demonstrated performance of the readout and simulator, highlighting their application to detectors in the laboratory and on sky.
MagAO-X is a visible to near-IR AO system that will enable a suite of instruments to perform high-contrast, high-resolution science. During its "Phase II" plan a 10-kilopixel Microwave Kinetic Inductance Detector (MKID) IFU will be deployed as a science camera behind MagAO-X. MKIDs are photon-counting detectors with energy resolution up to 30. The photon counting capability and readout allow for microsecond time resolution with no associated read noise. As a consequence of the high readout rate the MKID camera can be used as a Focal Plane Wavefront Sensor (FPWFS) allowing real-time speckle control while simultaneously taking science observations. With the high resolution and contrasts delivered by MagAO-X the MKID camera will aim to directly image and characterize exoplanets in the near-IR. The camera's IR filters can also be replaced with visible filters that will allow for further characterization and the potential for exploration of the inner regions of circumstellar disks.
We present an on-sky demonstration of a post-processing technique for companion detection called Stochastic Speckle Discrimination (SSD) and its ability to improve the detection of faint companions using SCExAO and the MKID Exoplanet Camera (MEC). Using this SSD technique, MEC is able to resolve companions at a comparable signal to noise to other integral field spectrographs solely utilizing photon arrival time information and without the use of any PSF subtraction techniques. SSD takes advantage of photon counting detectors, like the MKID detector found in MEC, to directly probe the photon arrival time statistics that describe the speckle field and allows us to identify and distinguish problematic speckles from companions of comparable brightness in an image. This technique is especially effective at close angular separations where the speckle intensity is large and where traditional post-processing techniques, like ADI, suffer.
The Planetary Imaging Concept Testbed Using a Recoverable Experiment-Coronagraph (PICTURE-C) experiment is a balloon-borne observatory for high-contrast imaging of debris disks and exoplanets around nearby stars. This experiment will use a 10,000-pixel Microwave Kinetic Inductance Detector (MKID) instrument as its science camera. The PICTURE-C MKID Camera is an integral field spectrograph (IFS) with a bandpass of λ = 540 − 660 nm that sits behind a modest adaptive optics system and coronagraph which promise to achieve contrast ratios down to 10-7 from 1.7 to 10 λ/D (0.35” to 2.1”). The MKIDs are photon counting detectors promising a resolution R up to 20 for the PICTURE-C mission. The ability to count photons with microsecond time resolution will allow the MKID camera to double as a Focal Plane Wavefront Sensor (FPWFS), helping to discriminate between speckles and circumstellar objects in real time and in post-processing. The intrinsic spectral resolution of the detectors will allow for further characterization of the debris disks and exoplanets around the stars targeted during its flight. The visible light observations taken with this instrument will complement infrared observations taken from the ground and serve to demonstrate MKIDs utility in a space-like environment. For this poster, we will introduce and discuss the PICTURE-C MKID Camera.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.