The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical
materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into
production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be
achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser
performance better than the design. A suite of custom metrology tools have been designed, built and installed at the
vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront
specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of
spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve
the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric
coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed
and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as
raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development
of even better optical materials.
Adaptive optics technology is critical for many current and developing applications at Lawrence Livermore National Laboratory. In particular, most large laser systems, including those being developed for Inertial Confinement Fusion and Laser Isotope Separation, require adaptive optics to correct for internal aberrations in these high-power systems. In addition, adaptive optics can provide capability for both high-resolution imaging and beam propagation through the atmosphere. Requirements for laser systems, imaging and propagation applications are currently driving wavefront control technology toward increased spatial and temporal frequency capability, as well as reduced system costs. We will present recent progress in the development of micro-electro-mechanical deformable mirrors for adaptive optics applications.
Conference Committee Involvement (1)
Optomechatronic Micro/Nano Devices and Components II
4 October 2006 | Boston, Massachusetts, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.