Ice rich permafrost is observed at Chajnantor volcano (5,640m a.s.l.) on the University of Tokyo Atacama Observatory (TAO) site. Presence or absence of the permafrost is considered to be requested quite different engineering skills for their infrastructures. Lower altitude boundary is reported to be above 5,079m a.s.l. and maximum active (thawing) layer is 14cm. Minimal seasonal temperature variation, small active layer thickness as the consequences of low numbers of thawing and freezing degree days. Diurnal amplitude results in freeze-thaw cycles only near the surface. Severe frost shattering occurs near the ground surface, producing a dusty, fine-material horizon called a hyper-cryogenic layer. The importance of the snow-covered season for providing great protection for surface energy penetration. Many permafrost hazards are expecting in this construction site such as frost heaving, subsiding, mass movements, erosion, chemical weathering, frost shattering, embankment instability, and
Institute of Astronomy, Graduate School of Science, the University of Tokyo is promoting the University of Tokyo Atacama Observatory Project, which is to construct an infrared-optimized 6.5m telescope at the summit of Co. Chajnantor (5640m altitude) in northern Chile. The high altitude and dry climate (PWV-0.5mm) realize transparent atmosphere in the infrared wavelength. The project is now approaching the final phase of the construction. Production of major components are almost completed: Production and preassembly test of a telescope mount and dome enclosure have been completed in Japan, and they are being transported to Chile. Three mirrors, the 6.5m primary, 0.9m secondary, and 1.1m-0.75m tertiary mirrors and their support systems have been all completed and tested in the USA. An aluminizing chamber have been fabricated in China, and its tests have been carried out in Japan. Development of two facility instruments, SWIMS and MIMIZUKU, are also completed. They were transported to the Subaru telescope, successfully saw the first light in 2018, and are confirmed to have the performance as designed. On-site construction work at the summit is now underway. Expansion of a summit access road from the ALMA concession was completed in 2019. Installation of foundation will follow, and then erection of the dome enclosure and a control building. The construction works are delayed by COVID-19, and we expect to complete the dome enclosure by Q3 of 2021. The telescope will be installed inside the dome and see the engineering first light by early 2022.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.