The University of Tokyo Atacama Observatory (TAO) is a project to build and operate an infrared-optimized 6.5m telescope at the summit of Cerro Chajnantor (5640 m.a.s.l). This is promoted by Institute of Astronomy, Graduate School of Science, the University of Tokyo in collaboration with many universities and institutes. The project is now approaching the final phase of the construction. Production of major components are almost completed. The primary mirror fabricated by Steward Observatory Richard F. Caris Mirror Lab in the University of Arizona was temporarily assembled in its support system and confirmed its performance by the optical test in the laboratory. The telescope mount, the enclosure system, and the mirror coating system were fabricated in Japan and already shipped to Chile. They are now stored in an open yard located in the foot area of Cerro Chajanator. The expansion of the summit access road, the summit leveling, the foundation work was completed. Now the construction work of the summit facilities is on-going. TAO will equip three instruments in early science phase. A near-infrared instrument SWIMS is completed, and now used as a PI-type instrument of Subaru telescope. A near-infrared spectrograph NICE which was used on the 1.6m Pirka telescope in Japan is being refurbished for TAO. A mid-infrared instrument MIMIZUKU successfully saw the first light on Subaru telescope and is being prepared for TAO in Japan. We expect to start science operation in FY2023.
Ice rich permafrost is observed at Chajnantor volcano (5,640m a.s.l.) on the University of Tokyo Atacama Observatory (TAO) site. Presence or absence of the permafrost is considered to be requested quite different engineering skills for their infrastructures. Lower altitude boundary is reported to be above 5,079m a.s.l. and maximum active (thawing) layer is 14cm. Minimal seasonal temperature variation, small active layer thickness as the consequences of low numbers of thawing and freezing degree days. Diurnal amplitude results in freeze-thaw cycles only near the surface. Severe frost shattering occurs near the ground surface, producing a dusty, fine-material horizon called a hyper-cryogenic layer. The importance of the snow-covered season for providing great protection for surface energy penetration. Many permafrost hazards are expecting in this construction site such as frost heaving, subsiding, mass movements, erosion, chemical weathering, frost shattering, embankment instability, and
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.