PRIMA, the instrument for Phase-Referenced Imaging and Micro-arcsecond Astrometry at the VLTI, is currently being
developed at ESO. PRIMA will implement the dual-feed capability, at first for two UTs or ATs, to enable simultaneous
interferometric observations of two objects that are separated by up to 1 arcmin. PRIMA is designed to perform narrow-angle
astrometry in K-band with two ATs as well as phase-referenced aperture synthesis imaging with instruments like
Amber and Midi. In order to speed up the full implementation of the 10 microarcsec astrometric capability of the VLTI
and to carry out a large astrometric planet search program, a consortium lead by the Observatoire de Genève, Max
Planck Institute for Astronomy, and Landessternwarte Heidelberg, has built Differential Delay Lines for PRIMA and is
developing the astrometric observation preparation and data reduction software. When the facility becomes fully
operational in 2009, we will use PRIMA to carry out a systematic astrometric Exoplanet Search program, called ESPRI.
In this paper, we describe the narrow-angle astrometry measurement principle, give an overview of the ongoing hardand
software developments, and outline our anticipated astrometric exoplanet search program.
ESPRI is a project which aims at searching for and characterizing extra-solar planets by dual-beam astrometry with
PRIMA@VLTI. Differential Delay Lines (DDL) are fundamental for achieving the micro-arcseconds accuracy required
by the scientific objective. Our Consortium, consisting of the Geneva Observatory, the Max-Planck Institut for
Astronomy Heidelberg, and the Landessternwarte Heidelberg, in collaboration with ESO, has built and tested these
DDLs successfully and will install them in summer 2008 at the VLTI. These DDLs consist of high quality cat's eyes
displaced on a parallel beam-mechanics and by means of a two-stage actuation with a precision of 5 nm over a stroke
length of 70 mm. Over the full range, a bandwidth of about 400 Hz is achieved. The DDLs are operated in vacuum. We
shall present, in this paper, their design and their exceptional performances.
A search for extrasolar planets using the ESO VLTI PRIMA facility
will become feasible in 2007. An astrometric accuracy of 10 micro-arcseconds will allow us to detect sub-Uranus mass planets around the
most nearby stars, as well as to conduct a planet search around stars of different ages. Most of the PRIMA hardware subsystems are currently being developed by industry. At the same time a scientific Consortium has formed that will deliver the differential delay lines and astrometric software for PRIMA to ESO.
In this paper we describe the planned efforts by the Consortium
related to the "PRIMA astrometry operations and software". These
activities include an overall "PRIMA astrometry error budget", a
"PRIMA astrometry calibration and observation strategy", the "PRIMA astrometry observation preparation tools" and the "PRIMA astrometry data reduction tools". We describe how all these components fit together in an overall approach to the flow of knowledge within the project. First by quantifying the fundamental limits of the VLTI infrastructure and the astronomical sources under study. Followed by elimination or suppression of the errors through either a hardware change to the system, software control of the system, or a proper calibration and observation strategy.
The ultimate goal is being able to calibrate all PRIMA astrometric data acquired over the full lifetime of PRIMA (5 to 10 years) to a uniform accuracy of 10 micro-arcseconds. This will allow identification of long-term trends in the astrometric parameters due to planetary companions around nearby stars and to determine the distances and proper motions for the selected sources.
The PRIMA facility will implement dual-star astrometry at the VLTI. We have formed a consortium that will build the PRIMA differential delay lines, develop an astrometric operation and calibration plan, and deliver astrometric data reduction software. This will enable astrometric planet surveys with a target precision of 10μas. Our scientific goals include determining orbital inclinations and masses for planets already known from radial-velocity surveys, searches for planets around stars that are not amenable to high-precision radial-velocity observations, and a search for large rocky planets around
nearby low-mass stars.
This paper presents a signal analysis method with the purpose of detecting frequency chande and acceleration amplitude of vibrating-type accelerometer's output. The method has potential application for newly developed oscillating micro accelerometers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.