The miniaturization of optical coherence tomography (OCT) systems could open up potential new markets, such as point-of-care application, home OCT to regularly monitor disease and treatment progress, and in low-resource settings. Photonic integrated circuits (PIC) are considered an attractive approach to miniaturize OCT. We present our recent achievements in in vivo retinal imaging with a PIC-based Mach-Zehnder interferometer integrated in a state-of-the-art ophthalmic OCT system. The system achieves 94 dB at 750 µW on the sample, running at 50 kHz. Preliminary results of a fully packaged 4-channel opto-electronic OCT engine further demonstrate the potential of PIC-based OCT.
We report on a swept-source OCT system based on a photonic-electronic integrated circuit. It enables a parallelization of data acquisition resulting in an effective A-scan rate of 4x100 kHz at a central wavelength of 840 nm.
The monolithic co-integration of photonic elements forming the multiplexed interferometers and the system electronics on one chip allows a very compact OCT engine in a photonic package. Integrated in an ophthalmic system, the maximum sensitivity was estimated to be 91 dB with an optical power of 4x520 µW at the model eye. An eye phantom was imaged at 400 kHz showing its layered structure.
Silicon nitride waveguide based photonic integrated circuits (PICs) are intensively investigated for a wide range of sensing applications in the visible to sub 1-µm near-infrared spectral region. The monolithic co-integration of silicon photodiodes and read-out electronics offers additional benefits in terms of performance and miniaturization. We discuss challenging aspects related to the efficient coupling and routing of light to, from, and within PICs and present interfacing photonic building blocks offering potential solutions. We demonstrate the suitability of these interfacing building blocks by using them for the realization of a PIC-based multi-channel optical coherence tomography concept at 840 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.