The X-IFU is one of the two instruments of ATHENA, the next ESA large X-ray observatory. It is a cryogenic spectrometer based on an array of TES microcalorimeters. To reduce the particle background, the TES array works in combination with a Cryogenic AntiCoincidence detector (CryoAC). The CryoAC is a 4-pixel detector, based on ~1 cm2 silicon absorbers sensed by Ir/Au TES. It is required to have a wide energy bandwidth (from 20 keV to ~1 MeV), high efficiency (< 0.014% missed particles), low dead-time (< 1%) and good time-tagging accuracy (10 μs at 1σ). An end-to-end simulator of the CryoAC detector has been developed both for design and performance assessment, consisting of several modules. First, the in-flight flux of background particles is evaluated by Geant4 simulations. Then, the current flow in the TES is evaluated by solving the electro-thermal equations of microcalorimeters, and the detector output signal is generated by simulating the SQUID FLL dynamics. Finally, the output is analyzed by a high-efficiency trigger algorithm, producing the simulated CryoAC telemetry. Here, we present in detail this end-to-end simulator, and how we are using it to define the new CryoAC baseline configuration in the new Athena context.
The Athena observatory is the second large class ESA mission to be launched on early 2030’s. One of the two on board instruments is the X-IFU, which is a TES based kilo-pixels array able to perform simultaneous high grade energy spectroscopy (2.5eV@7keV) and imaging over the 5' FoV. The X-IFU sensitivity is degraded by primary particles background (bkg) of both solar and Galactic Cosmic Rays origin, and secondary electrons produced by primaries interacting with the materials surrounding the detector. The TES-array main sensor therefore needs a Cryogenic AntiCoincidence detector (CryoAC) to veto as much as possible such particles. The required residual bkg is 0.005 cts/cm2 /s/keV in 2-10 keV energy bandwidth. The CryoAC is at present baselined as 4 pixels detector made of Silicon suspended absorbers sensed by a network of IrAu TESes, and placed at a distance < 1 mm below the TES-array. On November 2019, Athena has successfully passed the Mission Formulation Review (MFR), thus entering in Phase B. Next close goal is the MAR (Mission Adoption Review) planned in second half of 2022 where all the critical technologies must demonstrate a Technology Readiness Level (TRL) equal to 5. Here we will provide an overview of the CryoAC program advancement involving: 1) the present particle background assessment; 2) the assembly design concept and the related trade-off studies between the present baseline (4 pixels) against a monolithic solution (1 pixel); 2) the technology status (i.e., some results from the integrated chipset test; warm electronics). We will conclude with programmatic aspects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.