MoS2 has attracted substantial attention due to its atomic thickness and outstanding electronic and mechanical properties. As one of the thinnest semiconductors in the world, MoS2 is promising to build flexible electronics that can be integrated with objects with arbitrary shapes and inspires a vision of distributed ubiquitous electronics. Despite recent advances in two-dimensional materials-based electronics (e.g. 2D materials-based transistors, memory devices and sensors), an efficient and flexible energy harvesting solution is necessary, but still missing, to enable a self-powered system. At the same time, the electromagnetic (EM) radiation in the Wi-Fi band (2.4 GHz and 5.9 GHz) is becoming increasingly ubiquitous and it would be beneficial to be able to wirelessly harvest it to power future distributed electronics. However, the rectennas (i.e. RF energy harvesters) based on flexible semiconductors have not been fast enough to cover the Wi-Fi band due to their limited transport properties. Here we present a unique MoS2 semiconducting-metallic phase heterojunction, which enables a flexible and high-speed Schottky diode with a cutoff frequency of 10 GHz. Due to a novel lateral architecture and self-aligned phase engineering, our MoS2 Schottky diode exhibits significantly reduced parasitic capacitance and series resistance. By integrating the MoS2 rectifier with a flexible Wi-Fi band antenna, we successfully fabricate a fully flexible rectenna that demonstrates direct energy harvesting of EM radiation in the Wi-Fi band with zero external bias (battery-free). Moreover, taking advantage of the nonlinearity of the MoS2 Schottky diode, a frequency mixing in the gigahertz range is also successfully demonstrated on flexible substrates.
Optical sensing technology is critical for optical communication, defense and security applications.
Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel
materials such as CNT and Graphene have opened doors for new approaches to apply device design
methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of
applications.
This paper is intended to review recent advancements and present different device architectures and
analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave
bands of interest and their characteristics [1, 2]
We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures
growth and characterization using ZnO/MgZnO based technologies and their applications. Recent
advancements in design and development of CNT and Graphene based detection technologies have shown
promise for optical sensor applications. We will present theoretical and experimental results on these device
and their potential applications in various bands of interest.
We present a new material platform for uncooled bolometric infrared detection, consisting of a composite membrane of carbon nanotubes and a non-conductive, volume phase-change polymer. Devices using this platform have achieved temperature coefficients of resistance (TCR) in excess of - 40%/K at 300 K, an order of magnitude larger than commercial materials.
IR Sensors and imagers using nanostructure based materials are being developed for a variety of
Defense and Commercial Applications. In this paper, we will discuss recent modeling effort and
the experimental work under way for development of next generation CNT and Graphene based
bolometer for these applications. We will discuss detector concepts that will provide next
generation high performance, high frame rate, and uncooled nano-bolometer for MWIR and
LWIR bands. We will discuss the path forward to demonstrate enhanced IR sensitivity for
bolometer arrays.
EO/IR Sensors and imagers using nanostructure based materials are being developed for a variety
of Defense Applications. In this paper, we will discuss recent modeling effort and the
experimental work under way for development of next generation carbon nanostructure based
infrared detectors and arrays. We will discuss detector concepts that will provide next generation
high performance, high frame rate, and uncooled nano-bolometer for MWIR and LWIR bands.
The critical technologies being developed include carbon nanostructure growth, characterization,
optical and electronic properties that show the feasibility for IR detection. Experimental results on
CNT nanostructures will be presented. We will discuss the path forward to demonstrate
enhanced IR sensitivity and larger arrays.
Arrays of "nanorectennas" consist of diode-coupled nanoantennas with plasmonic resonances in the visible/near-infrared
(vis/nir) regime, and are expected to convert vis/nir radiative power into useful direct current. We study plasmonic
resonances in large format (~ 1 mm2 area) arrays, consisting of electron beam-patterned horizontal (e.g., parallel to the substrate) Ag lines patterned on ultrathin (< 20 nm) tunneling barriers (NiO, NbOx, and other oxides). Our e-beam fabrication technique is scalable to large dimensions, and allows us to easily probe different antenna dimensions. These
tunneling barriers, located on a metallic ground plane, rectify the alternating current generated in the nanoantenna at
resonance. We measure the plasmonic resonances in these nanoantennas, and find good agreement with modeling,
which also predicts that the electric field driving the electrons into the ground plane (and therefore the rectification
efficiency) is considerably enhanced at resonance. Various metal-insulator-metal tunneling diodes, incorporating the
afore-mentioned barrier layers and different metals for the ground plane, are experimentally characterized and compared
to our conduction model. We observe ~ 1 mV signals from NiO-based nanorectenna arrays illuminated by 532 nm and
1064 nm laser pulses, and discuss the origin of these signals.
The advantages and applications of chalcogenide glass (ChG) thin film photoresists for grayscale lithography are demonstrated. It is shown that the ChG films can be used to make ultrathin (~600 nm), high-resolution grayscale patterns, which can find their application, for example, in IR optics. Unlike polymer photoresists, the IR transparent ChG patterns can be useful as such on the surface or can be used to transfer the etched pattern into silicon or other substrates. Even if the ChG is used as an etch mask for the silicon substrate, its greater hardness can achieve a greater etch selectivity than that obtained with organic photoresists. The suitability of ChG photoresists is demonstrated with inexpensive and reliable fabrication of ultrathin Fresnel lenses that are transparent in the visible as well as in the IR region. The optical functionality of the Fresnel lenses is confirmed. Application of silver photodissolution in grayscale lithography for microelectromechanical systems (MEMS) applications is also shown. A substrate to ChG/silver thickness etching ratio of ~10 is obtained for the transfer of patterns into silicon using reactive ion etching (RIE), more than a fivefold increase compared to traditional polymer photoresist.
The advantages and applications of chalcogenide glass (ChG) thin film photoresists for grayscale lithography are
demonstrated. It is shown that the ChG films can be used to make ultrathin (~600 nm), high-resolution grayscale
patterns, which can find their application, for example, in IR optics. Unlike polymer photoresists, the IR transparent
ChG patterns can be useful as such on the surface, or be used to transfer the etched pattern into silicon or other
substrates. Even if the ChG is used as an etch mask for the silicon substrate, its greater hardness can achieve a greater
transfer ratio than that obtained with organic photoresists. The suitability of ChG photoresists is demonstrated with
inexpensive and reliable fabrication of ultrathin Fresnel lenses that are transparent in the visible as well as in the IR
region. The optical functionality of the Fresnel lenses is confirmed. Application of silver photodissolution in grayscale
lithography for MEMS applications is also shown. The process consists of the following steps: ChG film deposition, Ag
film deposition, irradiation through a grayscale mask, removal of the excess Ag and the transfer of the pattern to Si by
dry etching. A substrate to ChG thickness etching ratio of ~ 10 is obtained for the transfer of patterns into silicon, more
than a five fold increase compared to traditional polymer photoresist.
A major concern in the development of microelectromechanical systems (MEMS) is the presence of residual stress. This
stress, which is produced during the fabrication of multi-layer thin-film structures, can significantly affect the
performance of micro-scale devices. Though experimental measurement techniques are accurate, actual stress
measurements can vary dramatically from run to run and wafer to wafer. For this reason, the modeling of this stress can
be a challenging task. Past work has often focused on experimental, static techniques for determining residual-stress
levels in single-layer and bi-layer structures. In addition, in prior studies, the focus has primarily been on residual-stress
measurements in thin films as they are being deposited and prior to the release of a particular device. In this effort,
residual stresses in MEMS resonators are characterized pre- and post-micro-machining and release of the structures.
This is accomplished by applying three residual-stress identification techniques. The first technique, which is based on
wafer-bow measurements and Stoney's formula, is suited for determining the residual stresses in thin film layers as they
are being deposited and before the occurrence of a micro-machining or release process. In the second technique, a static
parametric identification technique, device deflection data is made use of to approximate individual device residual
stress immediately after release of a structure. The third technique, a dynamic parametric identification technique, which
can be based on linear or nonlinear frequency response data can be used to estimate device residual stress immediately
after release and after the device has been polarized. The results obtained by using these techniques are used to develop
an understanding of how geometry, fabrication, release and polarization of resonators affect the stress state in a
piezoelectric device. The results, which show that the stress levels can be quite different after a device has been released
and poled, point to the importance of considering parameter identification schemes such as those described in this effort
for identifying residual stresses in multi-layer, micro-structures.
A major concern in the development of microelectromechanical systems (MEMS) is the presence of residual stress.
Residual stress, which is produced during the fabrication of multi-layer thin-film structures, can significantly affect the
performance of micro-scale devices. Though experimental measurement techniques are accurate, actual stress
measurements can vary dramatically from run to run and wafer to wafer. For this reason, the modeling of this stress can
be a challenging task. Past work has often focused on experimental, static techniques for determining residual stress
levels in single-layer and bi-layer structures. In addition, these past studies have concentrated on residual stress
measurements in thin films as they are being deposited and prior to the release of a particular device. In this effort, three
techniques are used for determining residual stress levels in four-layer piezoelectrically driven cantilevers and resonator
structures. The first technique is a static technique that is based on wafer bow measurements and Stoney's formula. The
second technique is a dynamic technique that is based on parameter identification from nonlinear frequency-response
data. The third technique is also a static technique based on parameter identification from static device deflection
measurements. The devices studied, which are piezoelectric devices, are fabricated with varying lengths and widths.
The results obtained from these three techniques will be compared and discussed, and it is expected that this work will
enable the characterization of residual stress in micro-structures after they have been released.
Optics has the fundamental capability of dramatically improving computer performance via the reduction of capacitance for intrinsic high bandwidth communications and low power usage. Yet optical devices have not displaced silicon VLSI in any measure to date. The reason is clear. When placed into systems, the optical devices have not had significantly greater performance in equally complex information processing circuits and similarly low manufacturing cost. An approach demonstrated here uses the same system integration techniques that have been successful for silicon electronics, only applied to optics. Essential for creation of very large scale integrated optics (VLSIO), with over 50,000 high speed logic gates per square centimeter, is a new class of ultra high confinement (UHC) waveguides. These waveguides are created with high index difference (as high as 4.0 to 1.0) between guide and cladding. The waveguides have been demonstrated with infrared cross sections less than 5% of a square free space wavelength. These waveguides can be manufactured today only in the mid-infrared, but the concepts should scale to the near-infrared as lithography improves. Waveguide corners have been designed and demonstrated with a bend radius of less than one free space wavelength. Resonators have been designed which have over 100 times smaller volume than VCSELs, yet efficiently inter-connected laterally in high densities. A connector to the UHC waveguides has been developed and demonstrated using diffractive optical element arrays on the back side of the substrate. The coupler arrays can allow up to 10,000 Gaussian beam connections per square centimeter. This connectivity also has advantages for low cost three dimensional packaging for reduced cost and thermal dissipation. Experimental results on the above concepts and components are presented.
The Fourier Transform Infrared (FTIR) absorption spectrum for the range of 500 to 4000 cm-1 wavenumbers was measured for several Ge films deposited on GaAs using ultra high vacuum E-beam deposition at various substrate temperatures ranging from room temperature (RT) to 500 degree(s)C. Using transmission electron microscopy, we show that Ge films deposited at room temperature and 100 degree(s)C on a (100) GaAs surface that did not have the oxides removed are amorphous while those deposited at 100 degree(s)C with the oxide removed are crystalline, but are highly defective. Secondary ion mass spectroscopy (SIMS) measurements show that the amorphous films at RT contain more than two orders of magnitude more oxygen than the films deposited at 100 degree(s)C or a single crystal film deposited at 400 degree(s)C. The oxygen-18 diffusion studies definitively show that the excess oxygen in the amorphous films percolates in from the atmosphere. SIMS studies further reveal that thermally removing the GaAs substrate surface oxide or depositing a Au film on top of the Ge film has little effect on the incorporation of oxygen.
Optics has the fundamental capability of dramatically improving computer performance via the reduction of capacitance for intrinsic high bandwidth communications and low power usage. Yet optical devices have not displaced silicon VLSI in any measure to date. The reason is clear. When placed into systems, the optical devices have not had significantly greater performance in equally complex information processing circuits and similarly low manufacturing cost. An approach demonstrated here uses the same system integration techniques that have been successful for silicon electronics, only applied to optics. Essential for creation of Very Large Scale Integrated Optics, with over 50,000 high speed logic gates per square centimeter, is a new class of Ultra High Confinement (UHC) waveguides. These waveguides are created with high index difference (as high as 4.0 to 1.0) between guide and cladding. The waveguides have been demonstrated with infrared cross sections less than 5% of a square free space wavelength. These waveguides can be manufactured today only in the mid- infrared, but the concepts should scale to the near-infrared as lithography improves. Waveguide corners have been designed and demonstrated with a bend radius of less than one free space wavelength. Resonators have been designed which have over 100 times smaller volume than VCSELs, yet efficiently interconnected laterally in high densities. A connector to the UHC waveguides has been developed and demonstrated using diffractive optical element arrays on the back side of the substrate. The coupler arrays can allow up to 10,000 Gaussian beam connections per square centimeter. This connectivity also has advantages for low-cost 3D packaging for reduced cost and thermal dissipation. Experimental results on the above concepts and components will be presented.
A high speed modulator at low voltage is created in the mid-infrared at 10 micrometers wavelengths by using field-induced absorption on otherwise forbidden intersubband transitions. The physical effects could scale to 1.5 micrometers wavelength light. This modulator is packaged into a unique 350 micrometers long ultra high confinement (UHC) waveguide for low capacitance and high speed. The modulator quantum wells are at the interface of a 2.1 micrometers thick by 3.75 micrometers wide UHC Ge waveguide and the GaAs substrate. The quantum wells have a 17% power coupling to the evanescent fields of the Ge waveguide. A connector to the UHC waveguides, with dimensions much smaller than a free space wavelength, has been developed and demonstrated using diffractive optical element arrays on the back side of the substrate and non-uniform grating couplers. Fields are applied across the modulator quantum wells via an ohmic contact to the side of the Ge waveguide on the top of the QWs. The ground is on the other side of the waveguide and lower towards the substrate. The 7 micrometers wide mesa supporting the quantum wells on the bottom of the Ge waveguide is slightly wider to accommodate a gold electrode.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.