The Experimental Probe of Inflationary Cosmology - Intermediate Mission (EPIC-IM) is a concept for the NASA
Einstein Inflation Probe satellite. EPIC-IM is designed to characterize the polarization properties of the Cosmic
Microwave Background to search for the B-mode polarization signal characteristic of gravitational waves generated
during the epoch of Inflation in the early universe. EPIC-IM employs a large focal plane with 11,000 detectors operating
in 9 wavelength bands to provide 30 times higher sensitivity than the currently operating Planck satellite. The optical
design is based on a wide-field 1.4 m crossed-Dragone telescope, an aperture that allows not only comprehensive
measurements of Inflationary B-mode polarization, but also measurements of the E-mode and lensing polarization
signals to cosmological limits, as well as all-sky maps of Galactic polarization with unmatched sensitivity and angular
resolution. The optics are critical to measuring these extremely faint polarization signals, and any design must meet
demanding requirements on systematic error control. We describe the EPIC-IM crossed Dragone optical design, its
polarization properties, and far-sidelobe response.
KEYWORDS: Reflectors, Telescopes, Sensors, Aluminum, Control systems, Error analysis, Radio telescopes, Manufacturing, Temperature metrology, Actuators
The Cornell Caltech Atacama Telescope (CCAT) is a 25 m diameter telescope that will operate at wavelengths as short
as 200 microns. CCAT will have active surface control to correct for gravitational and thermal distortions in the
reflector support structure. The accuracy and stability of the reflector panels are critical to meeting the 10 micron
HWFE (half wave front error) for the whole system. A system analysis based upon a versatile generic panel design has
been developed and applied to numerous possible panel configurations. The error analysis includes the manufacturing
errors plus the distortions from gravity, wind and thermal environment. The system performance as a function of panel
size and construction material is presented. A compound panel approach is also described in which the reflecting surface
is provided by tiles mounted on thermally stable and stiff sub-frames. This approach separates the function of providing
an accurate reflecting surface from the requirement for a stable structure that is attached to the reflector support structure
on three computer controlled actuators. The analysis indicates that there are several compound panel configurations that
will easily meet the stringent CCAT requirements.
To meet the 10 µm RMS half wavefront error requirement for the 25 m diameter Cornell Caltech Atacama Telescope
(CCAT), active control of the approximately 200 primary mirror panels is required. The CCAT baseline design includes
carbon fiber aluminum honeycomb sandwich mirror panels. Distortions of the panels due to thermal gradients, gravity
and the mounting scheme need to be taken into consideration in the control system design. We have modeled the
primary mirror surface as both flat and curved surfaces and have investigated mirror controllability with a variety of
sensor types and positions.
To study different mirror segmentation schemes and find acceptable sensor configurations, we have created a software
package that supports multiple segment shapes and reconfigurable panel sizing and orientation. It includes extensible
sensor types and flexible positioning. Inclusion of panel and truss deformations allows modeling the effects of thermal
and gravity distortions on mirror controllability.
Flat mirrors and curved mirrors with the correct prescription give similar results for controlled modes, but show
significant differences in the unsensed flat mirror modes. Both flat and curved mirror models show that sensing
schemes that work well with rigid, thermally stable panels will not control a mirror with deformable panels. Sensors
external to the mirror surface such as absolute distance measurement systems or Shack-Hartmann type sensors are
required to deal with panel deformations. Using a combination of segment based sensors and external sensors we have
created a promising prototype control system for the CCAT telescope.
CALISTO, the Cryogenic Aperture Large Infrared Space Telescope Observatory, will enable extraordinarily high
sensitivity far-infrared continuum and moderate (R ~ 1000) resolution spectroscopic observations at wavelengths from
~30µm to ~300 μm - the wavelengths between those accessible by JWST and future ground based facilities.
CALISTO's observations will provide vital information about a wide range of important astronomical questions
including (1) the first stars and initial heavy element production in the universe; (2) structures in the universe traced by
H2 emission; (3) the evolution of galaxies and the star formation within them (4) the formation of planetary systems
through observations of protostellar and debris disks; (5) the outermost portions of our solar system through observations
of Trans-Neptunian Objects (TNOs) and the Oort cloud. With optics cooled to below 5 K, the photon fluctuations from
the astronomical background (Zodiacal, Galactic, and extragalactic) exceed those from the telescope. Detectors with a
noise equivalent power below that set by the background will make possible astronomical-background-limited sensitivity
through the submillimeter/far-infrared region. CALISTO builds on studies for the SAFIR (Single Aperture Far Infrared)
telescope mission, employing a 4m x 6m off-axis Gregorian telescope which has a simple deployment using an Atlas V
launch vehicle. The unblocked telescope with a cold stop has minimal sidelobes and scattering. The clean beam will
allow astronomical background limited observations over a large fraction of the sky, which is what is required to achieve
CALISTO's exciting science goals. The maximum angular resolution varies from 1.2" at 30 µm to 12" at 300 μm. The
5σ 1 hr detectable fluxes are ▵S(dν/ν = 1.0) = 2.2x10-20 Wm-2, and ▵S(dν/ν = 0.001) = 6.2x10-22 Wm-2. The 8 beams per
source confusion limit at 70 μm is estimated to be 5 μJy. We discuss CALISTO optics, performance, instrument
complement, and mission design, and give an overview of key science goals and required technology development to
enable this promising far IR/submm mission.
We present scientific rationale, concepts and technologies for far-IR (λ=35-600 μm) instrumentation for the
cryogenic single-dish space telescopes envisioned for the next two decades. With the tremendous success of
Spitzer, the stage is set for larger (3-10 meter) actively-cooled telescopes and several are under consideration
including SPICA in Japan, and CALISTO/SAFIR in the US. The cold platforms offer the potential for far-IR
observations limited only by the zodiacal dust emission and other diffuse astrophysical foregrounds. Optimal
instrumentation for these missions includes large-format direct-detector arrays with sensitivity matched to the
low photon backgrounds. This will require major improvements relative to the current state of the art, especially
for wavelengths beyond the 38-micron silicon BIB cutoff, We review options and present progress with one
approach: superconducting bolometers.
We highlight in particular the scientific potential for moderate-resolution broadband spectroscopy. The large
cold telescopes can provide line sensitivities below 10-20 W m-2, enabling the first routine survey spectroscopy
of the redshift 0.5 to 5 galaxies that produced the cosmic far-IR background. These far-IR-bright dusty galaxies
account for half of the photon energy released since stars and galaxies began forming, and the new far-IR
spectroscopic capability will reveal their energy sources and chart their history. We describe concepts for the
background-limited IR-Submillimeter Spectrograph (BLISS) designed for this purpose. BLISS is a suite of
R~1000 spectrometer modules spanning the far-IR range, and is under study for SPICA; a similar but more
capable instrument can be scaled for CALISTO/SAFIR.
We present a design for a cryogenically cooled large aperture telescope for far-infrared astronomy in the wavength
range 30 μm to 300 μm. The Cryogenic Aperture Large Infrared Space Telescope Observatory, or CALISTO, is
based on an off-axis Gregorian telesocope having a 4 m by 6 m primary reflector. This can be launched using an
Atlas V 511, with the only optical deployment required being a simple hinged rotation of the secondary reflector.
The off-axis design, which includes a cold stop, offers exceptionally good performance in terms of high efficiency
and minimum coupling of radiation incident from angles far off the direction of maximum response. This means
that strong astronomical sources, such as the Milky Way and zodiacal dust in the plane of the solar system,
add very little to the background. The entire optical system is cooled to 4 K to make its emission less than
even this low level of astronomical emission. Assuming that detector technology can be improved to the point
where detector noise is less than that of the astronomical background, we anticipate unprecedented low values
of system noise equivalent power, in the vicinity of 10-19 WHz-0.5, through CALISTO's operating range. This
will enable a variety of new astronomical investigations ranging from studies of objects in the outer solar system
to tracing the evolution of galaxies in the universe throughout cosmic time.
We have developed a thermal-optical-mechanical model of a representative sunshield and telescope assembly,
appropriate to 10-m class far-infrared large space telescopes such as SAFIR, SPECs, SPIRIT, and CMBPol. The model
provides a tool for sensitivity analysis for design parameters, including material properties and structural configuration,
provides performance predictions, and has been used to direct technology development for large space telescope
structures and materials.
The sunshield model incorporates a flight-like design support structure for the five-layer combined sunshield and V-groove
radiator, including temperature-dependent thermal, mechanical, and optical properties for the structure and
deployed sunshield layers. Heat lift from mechanical cryocoolers is included, in fixed-temperature or power-balance
conditions, at arbitrary points on the sunshields and support structure.
The model properly accounts the wavelength dependence of radiative transfer between surfaces of widely different
temperature, which capacity has not been available from commercial codes for the infrared thermal band (source
temperatures 300 K-15 K) until very recently. A simplified model of the zodiacal background to be experienced at the
Sun-Earth L2 point is used which, with the wavelength-dependent thermal transfer, improves the fidelity of temperature
and heat lift requirements predictions for the coldest sunshield layer and telescope assembly.
We report on the status of Z-Spec, including preliminary results of our first astronomical measurements. Z-Spec is a cryogenic, broadband, millimeter-wave grating spectrometer designed for molecular line surveys of galaxies, including carbon monoxide redshift measurements of high-redshift submillimeter sources. With an instantaneous bandwidth of 185-305 GHz, Z-Spec covers the entire 1 mm atmospheric transmission window with a resolving power of 200-400. The spectrometer employs the Waveguide Far-Infrared Spectrometer (WaFIRS) architecture, in which the light propagation is confined within a parallel-plate waveguide, resulting in a minimum mechanical envelope. Its array of 160 silicon-nitride micromesh bolometers is cooled to below 100 mK for background-limited performance. With its sensitivity, broad bandwidth, and compactness, Z-Spec serves as a prototype for a future far-IR spectrometer aboard a cold telescope in space. Z-Spec successfully demonstrated functionality with a partial array of detectors and warm electronics during a week-long engineering run at the Caltech Submillimeter Observatory in June, 2005. We describe the instrument performance evaluated at the telescope and in subsequent laboratory tests and compare these results with design specifications. Following several modifications we returned to the telescope in April, 2006. We present a preliminary astronomical spectrum and discuss our plans to improve sensitivity and throughput to achieve our ultimate science goals.
SAFIR, the Single Aperture Far Infra Red Observatory, is a very powerful space mission that will
achieve background-limited sensitivity in the far infrared-submillimeter spectral region. Many
processes of enormous interest to astronomers can best be studied in this wavelength range, but
require the demanding combination of high sensitivity, good angular resolution, and spectroscopic
capability. SAFIR is a 10m class telescope offering good angular resolution, cooled to below 5 K in
order to achieve background-limited sensitivity, and equipped with a complement of large-format
cameras and broadband spectrometers. Successful operation of such a facility is critically dependent
on achieving the level of sensitivity expected, but this is rendered difficult by potential pickup from
unwanted sources of radiation. This problem is exacerbated by the fact that the emission from the
optical system itself is minimal due to its low temperature, thus emphasizing the importance of
minimizing pickup from unwanted astronomical sources of radiation, including the emission from
dust in our solar system (analogous to the zodiacal light, hence "zodi"), and the emission from warm
dust in the Milky Way (Galactic "cirrus").
The extreme sensitivity of SAFIR to these unwanted sources of radiation makes it essential to
understand the relative sensitivity of the telescope/detector system to radiation coming from angles
far outside the main beam, and to develop designs which minimize this pickup. In this paper we
analyze in some detail the relative telescope sensitivity (referred to as the antenna pattern by
microwave engineers) for different designs of SAFIR. These calculations include edge diffraction
from the secondary and primary reflector, and also the effect of blockage by the secondary and
blockage and scattering by support legs in a symmetric system. By convolving the antenna pattern
with the brightness of the sky due to the zodi and cirrus, we can calculate the power received when
the antenna is pointed in any specified direction. We can also compare the undesired pickup for
different designs, in particular symmetric vs. asymmetric (off-axis or unblocked) antenna
configurations. These considerations are vital for achieving the most efficient SAFIR design
possible, in terms of achieving maximum sensitivity while being able to observe over a large fraction
of the sky.
KEYWORDS: Telescopes, Space telescopes, Reflectors, James Webb Space Telescope, Mirrors, Stars, Reflector telescopes, Far infrared, Galactic astronomy, Space operations
SAFIR is a 10-meter, 4 K space telescope optimized for wavelengths between 20 microns and 1 mm. The combination of aperture diameter and telescope temperature will provide a raw sensitivity improvement of more than a factor of 1000 over presently-planned missions. The sensitivity will be comparable to that of the JWST and ALMA, but at the critical far infrared wavelengths, where much of the universe's radiative energy has emerged since the origin of stars and galaxies. We examine several of the critical technologies for SAFIR which enable the large cold aperture, and present results of studies examining the spacecraft thermal architecture. Both the method by which the aperture is filled, and the overall optical design for the telescope can impact the potential scientific return of SAFIR. Thermal architecture that goes far beyond the sunshades developed for the James Webb Space Telescope will be necessary to achieve the desired sensitivity of SAFIR. By optimizing a combination of active and passive cooling at critical points within the observatory, a significant reduction of the required level of active cooling can be obtained.
SAFIR is a large (10 m-class), cold (4-10 K) space telescope for wavelengths between 20 microns and 1 mm. It will provide sensitivity a factor of a hundred or more greater than that of Spitzer and Herschel, leveraging their capabilities and building on their scientific legacies. Covering this scientifically critical wavelength regime, it will complement the expected wavelength performance of the future flagship endeavors JWST and ALMA. This vision mission will probe the origin of stars and galaxies in the early universe, and explore the formation of solar systems around nearby young stars. Endorsed as a priority by the Decadal Study and successive OSS roadmaps, SAFIR represents a huge science need that is matched by promising and innovative technologies that will allow us to satisfy it. In exercising those technologies it will create the path for future infrared missions. This paper reviews the scientific goals of the mission and promising approaches for its architecture, and considers remaining technological hurdles. We review how SAFIR responds to the scientific challenges in the OSS Strategic Plan, and how the observatory can be brought within technological reach.
We present the design, integration, and first ryogenic testing of our new broad-band millimeter-wave spectrometer, Z-Spec. Z-Spec uses a novel architecture called WaFIRS (Waveguide Far-IR Spectrometer), which employs a curved diffraction grating in a parallel-plate waveguide propagation medium. The instrument will provide a resolving power betwee 200 and 350 across an instantaneous bandwidth of 190-310 GHz, all packaged within a cryostat that is of order 1 meter in size. For background-limited astronomical observations in the 1mm terrestrial window, Z-Spec uses 160 silicon nitride micro-mesh bolometers and the detectors and waveguide grating are cooled to ~0.1 K. Our first cryogenic measurements at 225 GHz show resolving power greater than 200, and the end-to-end throughput is estimated to be greater than 30%, possibly as high as 40%. Z-Spec represents the first systematic approach to cosmological redshift measurement that is not based on optical or near-IR identifications. With its good sensitivity and large bandwidth, Z-Spec provides a new capability for millimeter-wave astrophysics. The instrument will be capable of measureing rotational carbon monoxide line emission from bright dusty galaxies at redshifts of up to 4, and the broad bandwidth insures that at least two lines will be simultaneously detected, providing an unambiguous redshift determination. In addition to Z-Spec's observations over the next 1-3 years, the WaFIRS spectrometer architecture makes an excellent candidate for mid-IR to millimeter-wave spectrometers on future space-borned and suborbital platforms such as SPICA and SAFIR. The concept is dramatically more compact and lightweight than conventional free-space grating spectrometers, and no mirrors or lenses are used in the instrument. After the progress report on Z-Spec we highlight this capability.
The Dual Anamorphic Reflector Telescope (DART) is an architecture for large aperture space telescopes that enables the use of membranes. A membrance can be readily shaped in one direction of curvature using a combination of boundary control and tensioning, yielding a cylindrical reflector. Two cylindrical reflectors (orthogonal and confocal) comprise the 'primary mirror' of the telescope system. The aperture is completely unobstructed and ideal for infrared and high contrast observations. The DART high precision testbed researches fabrication, assembly, adjustment and characterization of 1 meter cylindrical membrane reflectors made of copper foil or kapton. We have implemented two metrology instruments: a non-contacting, scanning profilometer and an infrared interferometer. The profilometer is a laser confocal displacement measuring unit on an XYZ scanning stage. The infrared interferometer used a cylindrical null lens that tests a subaperture of the membrane at center of curvature. Current surface figure achieved is 25 μm rms over a 50 cm diameter aperture.
A 2-meter by 4-meter aperture DART (dual anamorphic reflector telescope) system has been designed and fabricated using thin stretched mesh reflectors. The system concept consists of a pair of single curvature reflectors with curvature in orthogonal directions relative to each other and is being developed for future ultra-lightweight space applications. The current design is an extension of a 1-meter aperture system previously prototyped and successfully tested in the FarIR. The 2m x 4m system is a laboratory prototype with areal density of less than 10kg/m2 for each reflector. The new design demonstrates the advantageous scaling properties of the single curvature reflector concept. The 2m x 4m system was configured and tested in the RF over several frequencies from 5.8 - 8.2 GHz. This paper documents the structural configuration, test preparation, test results, and analysis correlation. Test results show the DART system to be a high directivity antenna (46.5 dB), very low cross-polarization (-33 dB), and good off-axis properties. Test results were in good agreement with analytical predictions of the performance. Generally, the DART system easily achieves the surface accuracy requirements at 8.2 GHz.
The discovery of galaxies beyond z~1 which emit the bulk of their luminosity at long wavelengths has demonstrated the need for high-sensitivity, broad-band spectroscopy in the far-IR/submm/mm bands. Because many of these sources are not detectable in the optical,
long-wavelength spectroscopy is key to measuring their redshifts and ISM conditions. The continuum source list will increase in the coming decade with new ground-based instruments (SCUBA2, Bolocam, MAMBO), and the surveys of HSO and SIRTF. Yet the planned spectroscopic capabilities lag behind, in part due to the difficulty in scaling existing IR spectrograph designs to longer wavelengths. To overcome these limitations, we are developing WaFIRS, a novel concept for long-wavelength spectroscopy which utilizes a parallel-plate waveguide and a curved diffraction grating. WaFIRS provides the large (~60%) instantaneous bandwidth and high throughput of a conventional grating system, but offers a dramatic reduction in volume and mass. WaFIRS requires no space overheads for extra optical
elements beyond the diffraction grating itself, and is two-dimensional because the propagation is confined between two parallel plates. Thus several modules could be stacked to multiplex either spatially or in different frequency bands. The size and mass savings provide opportunities for spectroscopy from space-borne observatories which would be impractical with traditional spectrographs. With background-limited detectors and a cooled 3.5 m telescope, the line sensitivity would be comparable to that of ALMA, with instantaneous broad-band coverage. We present the spectrometer concept, performance verification with a mm-wave prototype, and our progress toward a cryogenic astronomical instrument
Z-Spec is a broadband (195 - 310 GHz), direct-detection, millimeter-wave spectrometer with moderate resolution (R ~ 350) that we are building to observe CO rotational lines and atomic fine-structure lines in the recently discovered population of submillimeter galaxies. A large fraction of these sources cannot be identified optically and thus redshift determination is extremely difficult. The large instantaneous bandwidth of Z-Spec will allow measurement of redshifts up to z~4 via detection of two or more CO lines in a single spectrum. The spectrometer is based on a parallel-plate waveguide grating architecture that is substantially more compact than a conventional free-space grating system. The spectrometer and an array of 160 silicon nitride micromesh bolometers will be cooled to 100 mK to provide background-limited sensitivity. In addition to measuring the redshifts of sources discovered in submillimeter continuum surveys, Z-Spec will demonstrate a novel spectrometer concept well-suited for future far-infrared space missions.
A 1.2-meter prototype Dual Anamorphic Reflector Telescope (DART) system has been built and tested. The key design feature of the telescope is a pair of membrane mirrors stretched to single curvature parabolic cylindrical sections. The parabolic figure of the mirrors is controlled by a pair of edge rails at two opposing ends of the membrane. The flexible edge rails are adjusted to parabolic to very high accuracy and can potentially be easily refigured on-orbit. The prototype telescope is lightweight and has demonstrated excellent optical performance for the farIR. The design is readily scalable to larger apertures and for operation at shorter wavelengths. Design and test results are discussed.
We discuss concepts for deploying direct-detection interferometers in space which are optimized for the wavelength range 40 micrometers to 500 micrometers . In particular, we introduce two missions in NASA's current strategic plan: SPIRIT (SPace InfraRed Interferometric Telescope) and SPECS (Submillimeter Probe of the Evolution of Cosmic Structure).
The Degree Angular Scale Interferometer (DASI) is a compact cm-wave interferometer designed to image anisotropy in the Cosmic Microwave Background (CMB) and to measure its angular power spectrum. The power spectrum will be densely sampled over the l range 160 to 710, corresponding to angular scales of 0.25 to 1.15 degrees. DASI consists of 13 elements. Each element consists of a 20-cm diameter lensed corrugated horn followed by a cooled low-noise HEMT amplifier operating from 26 - 36 GHz. All elements are mounted on a single alt-az mount, which fixes the projected baselines and obviates an IF tracking delay. The mount also includes rotation of the aperture plane along the line of sight to improve the u, v coverage and the control of instrumental systematics. The 10 GHz IF bandwidth will be correlated in 1 GHz bands to provide spectral index information. The instrument is scheduled to be completed in Summer 1998. After extensive testing it will be deployed at the South Pole for year-round operation starting in November 1999.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.