Myocardial perfusion imaging using single-photon emission computed tomography (SPECT), or myocardial perfusion SPECT (MPS) is a widely used clinical imaging modality for the diagnosis of coronary artery disease. Current clinical protocols for acquiring and reconstructing MPS images are similar for most patients. However, for patients with outlier anatomical characteristics, such as large breasts, images acquired using conventional protocols are often sub-optimal in quality, leading to degraded diagnostic accuracy. Solutions to improve image quality for these patients outside of increased dose or total acquisition time remain challenging. Thus, there is an important need for new methodologies that can help improve the quality of the acquired images for such patients, in terms of the ability to detect myocardial perfusion defects. One approach to improving this performance is adapting the image acquisition protocol specific to each patient. Studies have shown that in MPS, different projection angles usually contain varying amounts of information for the detection task. However, current clinical protocols spend the same time at each projection angle. In this work, we evaluated whether an acquisition protocol that is optimized for each patient could improve performance on the task of defect detection on reconstructed images for patients with outlier anatomical characteristics. For this study, we first designed and implemented a personalized patient-specific protocol-optimization strategy, which we term precision SPECT (PRESPECT). This strategy integrates the theory of ideal observers with the constraints of tomographic reconstruction to optimize the acquisition time for each projection view, such that performance on the task of detecting myocardial perfusion defects is maximized. We performed a clinically realistic simulation study on patients with outlier anatomies on the task of detecting perfusion defects on various realizations of low-dose scans by an anthropomorphic channelized Hotelling observer. Our results show that using PRESPECT led to improved performance on the defect detection task for the considered patients. These results provide evidence that personalization of MPS acquisition protocol has the potential to improve defect detection performance on reconstructed images by anthropomorphic observers for patients with outlier anatomical characteristics. Thus, our findings motivate further research to design optimal patient-specific acquisition and reconstruction protocols for MPS, as well as developing similar approaches for other medical imaging modalities.
Attenuation compensation (AC) is beneficial for visual interpretation tasks in single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). However, traditional AC methods require the availability of a transmission scan, most often a CT scan. This approach has the disadvantage of increased radiation dose, increased scanner costs, and the possibility of inaccurate diagnosis in cases of misregistration between the SPECT and CT images. Further, many SPECT systems do not include a CT component. To address these issues, we developed a Scatter-window projection and deep Learning-based AC (SLAC) method to perform AC without a separate transmission scan. To investigate the clinical efficacy of this method, we then objectively evaluated the performance of this method on the clinical task of detecting perfusion defects on MPI in a retrospective study with anonymized clinical SPECT/CT stress MPI images. The proposed method was compared with CT-based AC (CTAC) and no-AC (NAC) methods. Our results showed that the SLAC method yielded an almost overlapping receiver operating characteristic (ROC) plot and a similar area under the ROC (AUC) to the CTAC method on this task. These results demonstrate the capability of the SLAC method for transmission-less AC in SPECT and motivate further clinical evaluation.
Deep-learning (DL)-based methods have shown significant promise in denoising myocardial perfusion SPECT images acquired at low dose. For clinical application of these methods, evaluation on clinical tasks is crucial. Typically, these methods are designed to minimize some fidelity-based criterion between the predicted denoised image and some reference normal-dose image. However, while promising, studies have shown that these methods may have limited impact on the performance of clinical tasks in SPECT. To address this issue, we use concepts from the literature on model observers and our understanding of the human visual system to propose a DL-based denoising approach designed to preserve observer-related information for detection tasks. The proposed method was objectively evaluated on the task of detecting perfusion defect in myocardial perfusion SPECT images using a retrospective study with anonymized clinical data. Our results demonstrate that the proposed method yields improved performance on this detection task compared to using low-dose images. The results show that by preserving task-specific information, DL may provide a mechanism to improve observer performance in low-dose myocardial perfusion SPECT.
KEYWORDS: Denoising, Single photon emission computed tomography, Signal detection, Medical imaging, Defect detection, Nuclear medicine, Imaging systems, Signal processing
Multiple objective assessment of image-quality (OAIQ)-based studies have reported that several deep-learning (DL)-based denoising methods show limited performance on signal-detection tasks. Our goal was to investigate the reasons for this limited performance. To achieve this goal, we conducted a task-based characterization of a DLbased denoising approach for individual signal properties. We conducted this study in the context of evaluating a DL-based approach for denoising single photon-emission computed tomography (SPECT) images. The training data consisted of signals of different sizes and shapes within a clustered-lumpy background, imaged with a 2D parallel-hole-collimator SPECT system. The projections were generated at normal and 20% low-dose level, both of which were reconstructed using an ordered-subset-expectation-maximization (OSEM) algorithm. A convolutional neural network (CNN)-based denoiser was trained to denoise the low-dose images. The performance of this CNN was characterized for five different signal sizes and four different signal-to-background ratio (SBRs) by designing each evaluation as a signal-known-exactly/background-known-statistically (SKE/BKS) signal-detection task. Performance on this task was evaluated using an anthropomorphic channelized Hotelling observer (CHO). We observed that the DL-based denoising approach did not improve performance on the signal-detection task for any of the signal types. None of signal types did the DL-based denoising approach improve performance. Further investigations revealed a drop in the mean of the differences between the signal-present and the signal-absent images, resulting in this limited performance on detection tasks. Additionally, it was observed that evaluation with fidelity-based figures of merit (root mean square error and structural similarity index) directly contradicted the observer study findings for all signals. Overall, these results provide new insights on the performance of the DL-based denoising approach as a function of signal size and contrast. More generally, the observer study-based characterization provides a mechanism to evaluate the sensitivity of the method to specific object properties, and may be explored as analogous to characterizations such as modulation transfer function for linear systems. Finally, this work underscores the need for objective task-based evaluation of DL-based denoising approaches.
In SPECT, list-mode (LM) format allows storing data at higher precision compared to binned data. There is significant interest in investigating whether this higher precision translates to improved performance on clinical tasks. Towards this goal, in this study, we quantitatively investigated whether processing data in LM format, and in particular, the energy attribute of the detected photon, provides improved performance on the task of absolute quantification of region-of-interest (ROI) uptake in comparison to processing the data in binned format. We conducted this evaluation study using a DaTscan brain SPECT acquisition protocol, conducted in the context of imaging patients with Parkinson’s disease. This study was conducted with a synthetic phantom. A signal-known exactly/background-known-statistically (SKE/BKS) setup was considered. An ordered-subset expectation-maximization algorithm was used to reconstruct images from data acquired in LM format, including the scatter-window data, and including the energy attribute of each LM event. Using a realistic 2-D SPECT system simulation, quantification tasks were performed on the reconstructed images. The results demonstrated improved quantification performance when LM data was used compared to binning the attributes in all the conducted evaluation studies. Overall, we observed that LM data, including the energy attribute, yielded improved performance on absolute quantification tasks compared to binned data.
Attenuation compensation (AC) is a pre-requisite for reliable quantification and beneficial for visual interpretation tasks in single-photon emission computed tomography (SPECT). Typical AC methods require the availability of an attenuation map, which is obtained using a transmission scan, such as a CT scan. This has several disadvantages such as increased radiation dose, higher costs, and possible misalignment between SPECT and CT scans. Also, often a CT scan is unavailable. In this context, we and others are showing that scattered photons in SPECT contain information to estimate the attenuation distribution. To exploit this observation, we propose a physics and learning-based method that uses the SPECT emission data in the photopeak and scatter windows to perform transmission-less AC in SPECT. The proposed method uses data acquired in the scatter window to reconstruct an initial estimate of the attenuation map using a physicsbased approach. A convolutional neural network is then trained to segment this initial estimate into different regions. Predefined attenuation coefficients are assigned to these regions, yielding the reconstructed attenuation map, which is then used to reconstruct the activity distribution using an ordered subsets expectation maximization (OSEM)-based reconstruction approach. We objectively evaluated the performance of this method using highly realistic simulation studies conducted on the clinically relevant task of detecting perfusion defects in myocardial perfusion SPECT. Our results showed no statistically significant differences between the performance achieved using the proposed method and that with the true attenuation maps. Visually, the images reconstructed using the proposed method looked similar to those with the true attenuation map. Overall, these results provide evidence of the capability of the proposed method to perform transmissionless AC and motivate further evaluation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.