Attenuation compensation (AC) is a pre-requisite for reliable quantification and beneficial for visual interpretation tasks in single-photon emission computed tomography (SPECT). Typical AC methods require the availability of an attenuation map, which is obtained using a transmission scan, such as a CT scan. This has several disadvantages such as increased radiation dose, higher costs, and possible misalignment between SPECT and CT scans. Also, often a CT scan is unavailable. In this context, we and others are showing that scattered photons in SPECT contain information to estimate the attenuation distribution. To exploit this observation, we propose a physics and learning-based method that uses the SPECT emission data in the photopeak and scatter windows to perform transmission-less AC in SPECT. The proposed method uses data acquired in the scatter window to reconstruct an initial estimate of the attenuation map using a physicsbased approach. A convolutional neural network is then trained to segment this initial estimate into different regions. Predefined attenuation coefficients are assigned to these regions, yielding the reconstructed attenuation map, which is then used to reconstruct the activity distribution using an ordered subsets expectation maximization (OSEM)-based reconstruction approach. We objectively evaluated the performance of this method using highly realistic simulation studies conducted on the clinically relevant task of detecting perfusion defects in myocardial perfusion SPECT. Our results showed no statistically significant differences between the performance achieved using the proposed method and that with the true attenuation maps. Visually, the images reconstructed using the proposed method looked similar to those with the true attenuation map. Overall, these results provide evidence of the capability of the proposed method to perform transmissionless AC and motivate further evaluation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.