PLATO (PLAnetary Transits and Oscillations of stars)1 is the M3 class ESA mission dedicated to the discovery
and study of extrasolar planetary systems by means of planetary transits detection. PLATO Payload Camera
units are integrated and vibrated at CSL before being TVAC tested for thermal acceptance and performance
verification at 3 different test facilities (SRON, IAS and INTA). 15 of the 26 Flight Cameras were integrated,
tested and delivered to ESA for integration by the Prime between June 2023 and June 2024, with the remaining
flight units to be tested by the end of 2024. In this paper, we provide an overview of our serial testing approach,
some of the associated challenges, key performance results and an up-to-date status on the remaining planned
activities.
A STOP (Structural, Thermal, Optical and Performance) analysis has been conducted on the camera units of the PLATO space mission. The analysis is devoted to the prediction of in-orbit performance metrics that could not be otherwise verified through direct testing. The analysis presented in this paper is restricted to the so-called “static cases” which provide a snapshot of a specified thermal condition. These are intended to evaluate the camera performance over the expected operational temperature range and at zero gravity. We hereby provide a description of the model, the requirements to be tested, the simulation strategy and the performance results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.