This study explores the impact of rapid fluctuations in local water vapor content on ground-based wavefront quality in the infrared spectrum. Using data from the Very Large Telescope Interferometer, we study water vapor fluctuations in the K-band, revealing that water vapor seeing significantly affects wavefront quality, especially in the N band (8–13μm). The study proposes focal-plane wavefront sensing techniques to mitigate these effects, and through simulations, quantifies potential improvements in high-contrast imaging performance.
Non-common path quasi-static and differential aberrations are one of the big hurdles of direct imaging for current and future high-contrast imaging instruments. They increase speckle and photon noise thus reducing the achievable contrast and lead to a significant hit in HCI performance. The Mid-infrared ELT Imager and Spectrograph (METIS) will provide high-contrast imaging, including vortex coronagraphy in L, M and N bands, with the ultimate goal of directly imaging temperate rocky planets around the nearest stars. Ground-based mid-infrared observations are however also impacted by water vapor inhomogeneities in the atmosphere, which generate additional chromatic turbulence not corrected by the near-infrared adaptive optics. This additional source of wavefront error (WFE) significantly impacts HCI performance, and even dominates the WFE budget in N band. Instantaneous focal plane wavefront sensing is thus required to mitigate its impact. In this context, we propose to implement a novel wavefront sensing approach for the vortex coronagraph using an asymmetric Lyot stop and machine learning. The asymmetric pupil stop allows for the problem to become solvable, lifting the ambiguity on the sign of even Zernike modes. Choosing the Lyot plane instead of the entrance pupil for this mask is also not arbitrary: it preserves the rejection efficiency of the coronagraph and minimizes the impact of the asymmetry on the throughput. Last but not least, machine learning allows us to solve this inversion problem which is non-linear and lacks an analytical solution. In this contribution, we present our concept, our simulation framework, our results and a first laboratory demonstration of the technique.
The Mid-infrared ELT Imager and Spectrograph (METIS) is one of the first-generation scientific instruments for the ELT, built under the supervision of ESO by a consortium of research institutes across and beyond Europe. Designed to cover the 3 to 13 μm wavelength range, METIS had its final design reviewed in Fall 2022, and has then entered in earnest its manufacture, assembly, integration, and test (MAIT) phase. Here, we present the final design of the METIS high-contrast imaging (HCI) modes. We detail the implementation of the two main coronagraphic solutions selected for METIS, namely the vortex coronagraph and the apodizing phase plate, including their combination with the high-resolution integral field spectrograph of METIS, and briefly describe their respective backup plans (Lyot coronagraph and shaped pupil plate). We then describe the status of the MAIT phase for HCI modes, including a review of the final design of individual components such as the vortex phase masks, the grayscale ring apodizer, and the apodizing phase plates, as well as a description of their on-going performance tests and of our plans for system-level integration and tests. Using end-to-end simulations, we predict the performance that will be reached on sky by the METIS HCI modes in presence of various environmental and instrumental disturbances, including non-common path aberrations and water vapor seeing, and discuss our strategy to mitigate these various effects. We finally illustrate with mock observations and data processing that METIS should be capable of directly imaging temperate rocky planets around the nearest stars.
The mid-infrared (IR) regime is well suited to directly detect the thermal signatures of exoplanets in our solar neighborhood. The NEAR experiment: demonstration of high-contrast imaging (HCI) capability at ten microns, can reach sub-mJy detection sensitivity in a few hours of observation time, which is sufficient to detect a few Jupiter mass planets in nearby systems. One of the big limitations for HCI in the mid-IR is thermal sky-background. In this work, we show that precipitate water vapor (PWV) is the principal contributor to thermal sky background and science PSF quality. In the presence of high PWV, the HCI performance is significantly degraded in the background limited regime.
During the past years, ESO developed an ultra-fast Shack Hartman (SH) WaveFront Sensor (WFS) based on using a highspeed camera at framerates as high as 16 kHz. This WFS has been used to characterize the sub-ms spatio-temporal behaviour of Deformable Mirrors. This paper reports about the results obtained with micro voice coil actuated Deformable Mirrors. At sampling rates up to 16 kHz fast transients of the full surface can be measured allowing for detailed characterization and modelling of the mirrors’ spatio-temporal behaviour. When an optical phase step is applied to an actuator it triggers a wave travelling across the surface to the edges and then reflected. Using the fast WFS developed by ESO, it has been possible to visualize and characterize this transient phenomenon. Based on these experimental observations, different feed forward control techniques are designed and their efficiency to improve the actuators temporal behaviour and reduce the amplitude of the parasitic surface waves are compared.
The high-speed variability of the local water vapor content in the Earth atmosphere is a significant contributor to ground-based wavefront quality throughout the infrared domain. Unlike dry air, water vapor is highly chromatic, especially in the mid-infrared. This means that adaptive optics correction in the visible or near-infrared domain does not necessarily ensure a high wavefront quality at longer wavelengths. Here, we use literature measurements of water vapor seeing, and more recent infrared interferometric data from the Very Large Telescope Interferometer (VLTI), to evaluate the wavefront quality that will be delivered to the METIS mid-infrared camera and spectrograph for the Extremely Large Telescope (ELT), operating from 3 to 13 μm, after single-conjugate adaptive optics correction in the near-infrared. We discuss how the additional wavefront error due to water vapor seeing is expected to dominate the wavefront quality budget at N band (8–13 μm), and therefore to drive the performance of mid-infrared high-contrast imaging modes at ELT scale. Then we present how the METIS team is planning to mitigate the effect of water vapor seeing using focal-plane wavefront sensing techniques, and show with end-to-end simulations by how much the high-contrast imaging performance can be improved.
The High-contrast End-to-End Performance Simulator (HEEPS) is an open-source python-based software with a modular and extensible architecture, that creates end-to-end simulations of high contrast imaging (HCI) instruments. It uses the wavefront Fresnel propagation package PROPER, the telescope instrument data simulator ScopeSim, and the HCI image processing package VIP. In this paper, we present the design of HEEPS, and motivate its baseline structure with the implementation of the Mid-infrared ELT Imager and Spectrograph (METIS) HCI modes, including coronagraphic components such as vortex phase masks, ring apodizers, and apodizing phase plates. Then, we present the key results of our thorough end-to-end simulations starting from 1-hour AO residual phase screens produced with the end-to-end AO simulator COMPASS. We analyze various undesirable effects such as pupil effects (stability, uniformity, drift) and noncommon path phase and amplitude errors. Finally, the coronagraphic performance including all effects is shown for all the METIS HCI modes as 5-sigma sensitivity contrast curves after ADI post-processing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.