In this work, we present the design and fabrication of a fiber device that performs digital droplet microfluidics for molecular diagnostics. A variety of fibers and capillaries were used to build three connected modules dedicated to droplet generation, incubation, and fluorescence detection which enables a uniaxial arrangement. This is in contrast to the traditional 2-dimensional lab-on-a-chip architecture. We characterize our fiber device using a fluorescein dilution series. Our observed detection limit is on the order of 10 nM fluorescein. We demonstrate our all-fiber device for the fluorescence readout after loop-mediated isothermal amplification (LAMP) of synthetic SARS-CoV-2. Our results suggest that this fiber device can successfully distinguish between positive and negative samples in molecular diagnostics. We propose that our fiber device offers benefits over microfluidic chip techniques such as easier optical integration, much simpler sample loading, and faster diagnosis with high specificity and sensitivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.