PurposeWe aim to reduce image noise in high-resolution (HR) virtual monoenergetic images (VMIs) from photon-counting detector (PCD) CT scans by developing a prior knowledge-aware iterative denoising neural network (PKAID-Net) that efficiently exploits the unique noise characteristics of VMIs at different energy (keV) levels.ApproachPKAID-Net offers two major features: first, it utilizes a lower-noise VMI (e.g., 70 keV) as a prior input; second, it iteratively constructs a refined training dataset to improve the neural network’s denoising performance. In each iteration, the denoised image from the previous module serves as an updated target image, which is included in the dataset for the subsequent training iteration. Our study includes 10 patient coronary CT angiography exams acquired on a clinical dual-source PCD-CT (NAEOTOM Alpha, Siemens Healthineers). The HR VMIs were reconstructed at 50, 70, and 100 keV, using a sharp vascular kernel (Bv68) and thin (0.6 mm) slice thickness (0.3 mm increment). PKAID-Net’s performance was evaluated in terms of image noise, spatial detail preservation, and quantitative accuracy.ResultsPKAID-Net achieved a noise reduction of 96% compared to filtered back projection and 65% relative to iterative reconstruction, all while preserving spatial and spectral fidelity and maintaining a natural noise texture. The iterative refinement of PCD-CT data during the training process substantially enhanced the robustness of deep learning-based denoising compared to the original method, which resulted in some spatial detail loss.ConclusionsThe PKAID-Net provides substantial noise reduction while maintaining spatial and spectral fidelity of the HR VMIs from PCD-CT.
Coronary CT angiography (cCTA) is a fast non-invasive imaging exam for coronary artery disease (CAD) but struggles with dense calcifications and stents due to blooming artifacts, potentially causing stenosis overestimation. Virtual monoenergetic images (VMIs) at higher keV (e.g., 100 keV) from photon counting detector (PCD) CT have shown promise in reducing blooming artifacts and improving lumen visibility through its simultaneous high-resolution and multi-energy imaging capability. However, most cCTA exams are performed with single-energy CT (SECT) using conventional energy-integrating detectors (EID). Generating VMIs through EID-CT requires advanced multi-energy CT (MECT) scanners and potentially sacrifices temporal resolution. Given these limitations, MECT cCTA exams are not commonly performed on EID-CT and VMIs are not routinely generated. To tackle this, we aim to enhance the multi-energy imaging capability of EIDCT through the utilization of a convolutional neural network to LEarn MONoenergetic imAging from VMIs at Different Energies (LEMONADE). The neural network was trained using ten patient cCTA exams acquired on a clinical PCD-CT (NAEOTOM Alpha, Siemens Healthineers), with 70 keV VMIs as input (which is nominally equivalent to the SECT from EID-CT scanned at 120 kV) and 100 keV VMIs as the target. Subsequently, we evaluated the performance of EID-CT equipped with LEMONADE on both phantom and patient cases (n=10) for stenosis assessment. Results indicated that LEMONADE accurately quantified stenosis in three phantoms, aligning closely wi th ground truth and demonstrating stenosis percentage area reductions of 13%, 8%, and 9%. In patient cases, it led to a 12.9% reduction in average diameter luminal stenosis when compared to the original SECT without LEMONADE. These outcomes highlight LEMONADE's capacity to enable multi-energy CT imaging, mitigate blooming artifacts, and improve stenosis assessment for the widely available EID-CT. This has a high potential impact as most cCTA exams are performed on EID-CT.
Coronary computed tomography angiography (cCTA) is a widely used non-invasive diagnostic exam for patients with coronary artery disease (CAD). However, most clinical CT scanners are limited in spatial resolution from use of energy-integrating detectors (EIDs). Radiological evaluation of CAD is challenging, as coronary arteries are small (3-4 mm diameter) and calcifications within them are highly attenuating, leading to blooming artifacts. As such, this is a task well suited for high spatial resolution. Recently, photon-counting-detector (PCD) CT became commercially available, allowing for ultrahigh resolution (UHR) data acquisition. However, PCD-CTs are costly, restricting widespread accessibility. To address this problem, we propose a super resolution convolutional neural network (CNN): ILUMENATE (Improved LUMEN visualization through Artificial super-resoluTion imagEs), creating a high resolution (HR) image simulating UHR PCD-CT. The network was trained and validated using patches extracted from 8 patients with a modified U-Net architecture. Training input and labels consisted of UHR PCD-CT images reconstructed with a smooth kernel degrading resolution (LR input) and sharp kernel (HR label). The network learned the resolution difference and was tested on 5 unseen LR patients. We evaluated network performance quantitatively and qualitatively through visual inspection, line profiles to assess spatial resolution improvements, ROIs for CT number stability and noise assessment, structural similarity index (SSIM), and percent diameter luminal stenosis. Overall, ILUMENATE improved images quantitatively and qualitatively, creating sharper edges more closely resembling reconstructed HR reference images, maintained stable CT numbers with less than 4% difference, reduced noise by 28%, maintained structural similarity (average SSIM = 0.70), and reduced percent diameter stenosis with respect to input images. ILUMENATE demonstrates potential impact for CAD patient management, improving the quality of LR CT images bringing them closer to UHR PCD-CT images.
An important feature enabled by Photon-Counting Detector (PCD) CT is the simultaneous acquisition of multi-energy data, which can produce virtual monoenergetic images (VMIs) at a high spatial resolution. However, noise levels observed in the high-resolution (HR) VMIs are markedly increased. Recent work involving deep learning methods has shown great potential in CT image denoising. Many CNN applications involve training using spatially co-registered low- and high-dose CT images featuring high and low image noise, respectively. However, this is implausible in routine clinical practice. Further, typical denoising methods treat each VMI energy level independently, without consideration of the valuable information in the spectral domain. To overcome these obstacles, we propose a prior knowledge-aware iterative denoising neural network (PKAID-Net). PKAID-Net offers two major benefits: first, it utilizes spectral information by including a lower-noise VMI as a prior input; and second, it iteratively constructs refined datasets for neural network training to improve the denoising performance. This study includes 10 patient coronary CT angiography (CTA) exams acquired on a clinical HR PCD-CT (NAEOTOM Alpha, Siemens Healthineers). The HR VMIs were reconstructed at 50 and 70 keV, using a sharp kernel (Bv68) and thin (0.6 mm, 0.3 mm increment) slice thickness. Results showed that the PKAID-Net provided a noise reduction of 96% and 70% relative to FBP and iterative reconstruction, respectively while maintaining spatial and spectral fidelity and a natural noise texture. These results demonstrate the noise reduction capacity of PKAID-Net as applied to cutting-edge PCD-CT data to enable HR, multi-energy cardiac CT imaging.
Talbot-Lau grating interferometry (GI) can conduct X-ray phase contrast imaging outside synchrotron facilities and simultaneously provide attenuation, differential phase contrast, and small angle scattering information about imaging samples, where periodically distributed X-ray line sources are required. In this study, we proposed a novel cold-cathode flat-panel X-ray source with micro-array anode target to generate such line sources without using grating G0. Its cathode was composed of densely arranged zinc oxide (ZnO) nanowires, which can generate electrons by field electron emission effect, whereas micro periodic distributed Al-Mo-Al strips were utilized as anode target. X-ray spatial distribution and spectrum of the source with different anode target period (p0) were studied via using EGSnrc. Structured X-ray illumination required for GI was obtained under Mo strips. Mean contrast of the X-ray spatial distribution under the Mo strips of flat panel sources with p0 of 3, 15, 30, 126 m were 33.36%, 81.98%, 91.55%, and 98.63%, respectively. The source can eliminate the use of G0 and thus related limitations of G0 on Talbot-Lau GI.
Recent advancement of spectral computed tomography (SpCT) technologies by either multi-energy spectral data acquisition with energy-integration detector or single-energy spectral data acquisition with photon counting detector has enabled the reconstruction of virtual monochromatic images (VMIs) at any energy values within and outside the energy spectral ranges of current CTs’ X-ray tubes, resulting in the possibility of not only visualizing the tissue contrast variation characteristics along the X-ray energy dimension, but also quantifying the variation characteristics by machine learning (ML) for prediction of lesion malignancy or computer-aided diagnosis (CADx). This study explored the energy spectral information of SpCT, i.e., the contrast variation characteristics along the X-ray energy dimension, for ML-CADx of lesion type of colorectal polyps. Particularly, the tissue contrast variation patterns, called energy spectral features, along the Xray energy dimension in the VMIs is investigated. A figure of merit (FOM) for the task of ML-CADx is proposed, which ranks the series of VMIs along the X-ray energy dimension by inputting each VMI into a single channel deep learning (DL) pipeline and generating a corresponding a score of AUC (area under the curve of receiver operating characteristics). Then the FOM selects different numbers of the most highly ranked VMIs as the inputs to a multi-channel DL pipeline to generate the corresponding of AUC scores until all VMIs are selected. It is hypothesized that the AUC scores from the multi-channel DL pipeline will increase to reach the highest score and then drop along the ranking order, because all VMIs have the same anatomic structure and, therefore, the strong data redundancy. The FOM reaches the highest AUC score by minimizing the redundancy. We tested the hypothesis by comparing the proposed FOM-rank ML-CADx with the widely used Karhunen-Loève (KL) transform-based ranking method where the principal components are ordered automatically by the KL transform. The lesion data include the CT images of colorectal polyps and the pathological reports after they were resected. The proposed FOM-rank method outperformed the KL-based ranking method with an optimal gain of 4.7%, showing its effectiveness in prediction of lesion malignancy.
Dual-energy computed tomography (DECT) enables to generate a series of virtual monoenergetic images (VMIs). Using VMIs of a desired energy level (5 – 45 keV) can enhance the lesion-to-background and voxel-to-voxel within lesion contrast, because that the lesion material composition may vary from voxel to voxel. However, there are also strong correlation of the voxel values among different energy channels. This correlation may result in redundant information for the VMIs based lesion pathology differentiation. Therefore, we transformed the VMIs in the Karhunen–Loève domain to reduce the correlation. In the new domain, the leading three principal components accounts for more than 99% information and then were used to form a new descriptor for the differentiation task. Two pathological proven datasets were used for the evaluation. Experimental results showed that the VMIs can improved the AUC (area under the receiver operating characteristic curve) value from 0.862 and 0.647 to 0.912 and 0.830 comparing to using the conventional CT.
Based on the X-ray physics in computed tomography (CT) imaging, the linear attenuation coefficient (LAC) of each human tissue is described as a function of the X-ray photon energy. Different tissue types (i.e. muscle, fat, bone, and lung tissue) have their energy responses and bring more tissue contrast distribution information along the energy axis, which we call tissue-energy response (TER). In this study, we propose to use TER to generate virtual monoenergetic images (VMIs) from conventional CT for computer-aided diagnosis (CADx) of lesions. Specifically, for a conventional CT image, each tissue fraction can be identified by the TER curve at the effective energy of the setting tube voltage. Based on this, a series of VMIs can be generated by the tissue fractions multiplying the corresponding TER. Moreover, a machine learning (ML) model is developed to exploit the energy-enhanced tissue material features for differentiating malignant from benign lesions, which is based on the data-driven deep learning (DL)-CNN method. Experimental results demonstrated that the DL-CADx models with the proposed method can achieve better classification performance than the conventional CT-based CADx method from three sets of pathologically proven lesion datasets.
Based on well-established X-ray physics in computed tomography (CT) imaging, the spectral responses of different materials contained in lesions are different, which brings richer contrast information at various energy bins. Hence, obtaining the material decomposition of different tissue types and exploring its spectral information for lesion diagnosis becomes extremely valuable. The lungs are housed within the torso and consist of three natural materials, i.e., soft tissue, bone, and lung tissue. To benefit the lung nodule differentiation, this study innovatively proposed to use lung tissue as one basis material along with soft tissue and bone. This set of basis materials will yield a more accurate composition analysis of lung nodules and benefit the following differentiation. Moreover, a corresponding machine learning (ML)-based computer-aided diagnosis framework for lung nodule classification is also proposed and used for evaluation. Experimental results show the advantages of the virtual monoenergetic images (VMIs) generated with lung tissue material over the VMIs without lung tissue and conventional CT images in differentiating the malignancy from benign lung nodules. The gain of 9.63% in area under the receiver operating characteristic curve (AUC) scores indicated that the energy-enhanced tissue features from lung tissue have a great potential to improve lung nodule diagnosis performance.
Photon counting spectral CT (PCCT) can produce reconstructed attenuation maps in different energy channels, reflecting energy properties of the scanned object. Due to the limited photon numbers and the non-ideal detector response of each energy channel, the reconstructed images usually contain much noise. With the development of Deep Learning (DL) technique, different kinds of DL-based models have been proposed for noise reduction. However, most of the models require clean data set as the training labels, which are not always available in medical imaging field. Inspiring by the similarities of each channel's reconstructed image, we proposed a self-supervised learning based PCCT image enhancement framework via multi-spectral channels (S 2MS). In S 2MS framework, both the input and output labels are noisy images. Specifically, one single channel image was used as output while images of other single channels and channel-sum image were used as input to train the network, which can fully use the spectral data information without extra cost. The simulation results based on the AAPM Low-dose CT Challenge database showed that the proposed S2MS model can suppress the noise and preserve details more effectively in comparison with the traditional DL models, which has potential to improve the image quality of PCCT in clinical applications.
The tissue specific MRF type texture prior (MRFt) proposed in our previous work has been demonstrated to be advantageous in various clinical tasks. However, this MRFt model requires a previous full-dose CT (FdCT) scan of the same patient to extract the texture information for LdCT reconstructions. This requirement may not be met in practice. To alleviate this limitation, we propose to build a MRFt generator by internalizing a database with paired FdCT and LdCT scans using a (conditional) encoder-decoder structure model. We denote this method as the MRFtG-ConED. This generation model depends only on physiological features thus is robust for ultra-low dose CT scans (i.e., dosage < 10mAs). When the dosage is not extremely low (i.e., dosage > 10mAs), some texture information from LdCT images reconstructed by filtered back projection (FBP) can be also used to provide extra information.
Dual-energy computed tomography (DECT) has emerged as a promising imaging modality in the field of clinical diagnosis, which expands applications of CT imaging in its capability to acquire two datasets, one at high and the other at low energy. With the Bayesian reconstruction directly from projection measurements at two energies, the energy-independent densities of the two basis materials (e.g. bone/soft-tissue) of the scanned objects are obtained. This work investigated the feasibility of the computer-aided diagnosis with DECT Bayesian reconstruction (CADxDE) for polyp classification. Specifically, the above-reconstructed density images could generate a series of pseudo-single energy CT images multiplied with the corresponding mass attenuation coefficients at selected n energies. Given the augmented n-energy CT images, we proposed a convolution neural network (CNN) based CADx model to differentiate malignant from benign polyps by recognizing material features at different energies. The dataset consists of 63 polyp masses from fifty-nine patients were carried out to verify our CADxDE model. The classification results showed that the area under the receiver operating characteristic curve (AUC) score can be improved by 12.17% with CADxDE over the conventional single energy data only. This feasibility study indicates it is promising that the computer-aided diagnosis with DECT Bayesian reconstruction could be used to improve the clinical classification performance.
Dual energy CT (DECT) expands applications of CT imaging in its capability to acquire two datasets, one at high and the other at low energy, and produce decomposed material images of the scanned objects. Bayesian theory applied for statistical DECT reconstruction has shown great potential for giving the accurate decomposed material fraction images directly from projection measurements. It provides a natural framework to include various kinds of prior information for improved image reconstruction with its optimal selected hyper parameter by a trial-error style. To eliminate the cumbersome style, in this work, we propose a parameter-free Bayesian reconstruction algorithm for DECT (PfBR-DE). In our approach, the physical meaning of the hyper parameter can be interpreted as the ratio of the data variance α and the prior tolerance σ by formulating the probability distribution functions of the data fidelity and prior expectation. With an alternative optimization scheme, the data variance, prior tolerance and decomposed material images can be jointly estimated. Experimental results with the abdomen phantom demonstrate the PfBR-DE method can obtain the comparable quantity decomposed material images with the conventional methods without freely adjustable hyper parameter.
X-ray spectrum plays an essential role in CT applications. Since it is difficult to measure x-ray spectrum directly in practice, x-ray spectrum is always indirectly obtained by using transmission measurements through a calibration phantom of known thickness and materials. These methods are independent of CT image reconstruction and bring extra cost. In this study, we propose a parametric physical model based spectrum estimation algorithm for CT. First, a physical model contains six parameters is proposed to represent the x-ray spectrum, which is derived from the x-ray imaging physics. Second, a template image contains different material components can be obtained by segmenting CT reconstructed images with a simple method. And the estimated projection can be calculated by reprojecting the template image with the proposed spectrum model. Finally, the six parameters expressing the spectrum can be solved by minimizing the error between the estimated projection and real measurements. The effectiveness of the proposed method has been validated on the simulated data. Experimental results demonstrate the proposed method can estimate the accurate spectra at low and high energies and provide a good reconstruction of characteristic radiations.
In flat-panel based cone beam computed tomography (CBCT), ring artifacts always exist and degrade the quality of reconstructed images. In this work, we propose a convolutional neural network (CNN) based ring artifact reduction algorithm in CT images, which fuses the information from the original and corrected images to eliminate the artifacts. The proposed method consists of two steps. First, we establish a database consisting of three types of images for training, artifact-free, ring artifact and pre-corrected images. Second, the original and pre-corrected images are input to the trained CNN to generate an image with less artifacts. To further reduce the artifacts, by using image mutual correlation, pixels in the pre-corrected image and the CNN output image, which are less sensitive to artifacts, are combined to generate a hybrid corrected image. Both simulated and real data experiments were performed to verify the proposed method. Experimental results show that the proposed method can effectively suppress the ring artifacts without introducing processing distortion to the image structure.
Dual energy cone beam computed tomography (DE-CBCT) can provide more accurate material characterization than conventional CT by taking advantages of two sets of projections with high and low energies. X-ray scatter leads to erroneous values of the DE-CBCT reconstructed images. Moreover, the reconstructed image of DECT is extremely sensitive to noise. Iterative reconstruction methods using regularization are capable to suppress the noise effects and hence improve the image quality. In this paper, we develop an algorithmic scatter correction based on physical model and statistical iterative reconstruction for DE-CBCT. With the assumption that the attenuation coefficients of the soft tissues are relatively stable and uniform and the scatter component is dominated by low frequency signal, scatter components were calculated while updating the reconstructed images in each iteration. Finally, the CBCT image was reconstructed by scatter corrected projections using statistical iterative reconstruction algorithm. Experiment shows that the proposed method can effectively remove the artifacts caused by x-ray scatter. The CT value accuracy in the reconstructed images has been improved.
Dual energy computed tomography (DECT) has significant impacts on material characterization, bone mineral density inspection, nondestructive evaluation and so on. In spite of great progress has been made recently on reconstruction algorithms for DECT, there still exist two main problems: 1) For polyenergetic X-ray source, the tube spectrum needed in reconstruction is not always available. 2) The reconstructed image of DECT is very sensitive to noise which demands special noise suppression strategy in reconstruction algorithm design. In this paper, we propose a novel method for DECT reconstruction that reconstructs tube spectrum from projection data and suppresses image noise by introducing ℓ1-norm based regularization into statistical reconstruction for polychromatic DECT. The contribution of this work is twofold. 1) A three parameters model is devised to represent spectrum of ployenergetic X-ray source. And the parameters can be estimated from projection data by solving an optimization problem. 2) With the estimated tube spectrum, we propose a computation framework of ℓ1-norm regularization based statistical iterative reconstruction for polychromatic DECT. Simulation experiments with two phantoms were conducted to evaluate the proposed method. Experimental results demonstrate the accuracy and robustness of the spectrum model in terms of that comparable reconstruction image quality can be achieved with the estimated and ideal spectrum, and validate that the proposed method works with attractive performance in terms of accuracy of reconstructed image. The root mean square error (RMSE) between the reconstructed image and the ground truth image are 7.648 × 10-4 and 2.687 x 10-4 for the two phantoms, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.