The extreme sensitivity of quantum magnetometers enables new applications in material testing such as the identification of single defect events in the bulk of small volume specimen (0.1 mm³). Exposing ferromagnetic materials to strain alters their magnetic response. Due to uncompensated spins, defects arising from the fatigue process interact with magnetic domain walls. Optically pumped zero-field magnetometers (OPM) provide the sensitivity required to measure small variations in the magnetic response and potentially to quantify damage in the material. We provide first results of a novel micro fatigue setup with an integrated OPM to correlate variations of the magnetic response in a multimodal approach. The position of the Villari reversals within the magneto-mechanic hysteresis and the amplitude of magnetic field are potential candidates to estimate fatigue damage within the specimen.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.