MeV gamma-ray observations provide unique information about nucleosynthesis, diffusion in our galaxy, low-energy cosmic rays, particle acceleration, and other phenomena. However, the detection sensitivity in this band is significantly lower than that in other bands due to a large background contamination. To address this issue, we are developing an electron-tracking Compton camera (ETCC) with powerful background rejection tools based on Compton recoil electron tracks. This will enable future observations to be conducted with greater sensitivity. We have successfully demonstrated the detection technology and performance of the ETCC with two balloon experiments. We are preparing for the next balloon flight, SMILE-3, to observe galactic diffusion gamma rays and some bright celestial objects.
The Cherenkov Telescope Array1 (CTA) is the next-generation ground-based observatory for very-high-energy gamma rays. The CTA consists of three types of telescopes with different mirror areas to cover a wide energy range (20 GeV–300 TeV) with an order of magnitude higher sensitivity than the predecessors. Among those telescopes, the Large-Sized Telescope (LST) is designed to detect low-energy gamma rays between 20 GeV and a few TeV with a 23 m diameter mirror. To make the most of such a large light collection area (about 400 m2), the focal plane camera must detect as much reflected Cherenkov light as possible. We have developed each camera component to meet the CTA performance requirements for more than ten years and performed quality-control tests before installing the camera to the telescope.2, 3 The first LST (LST-1) was inaugurated in October 2018 in La Palma, Spain (Figure 1).4 After the inauguration, various calibration tests were performed to adjust hardware parameters and verify the camera performance. In parallel, we have been developing the analysis software to extract physical parameters from low-level data, taking into account some intrinsic characteristics of the switched capacitor arrays, Domino Ring Sampler version 4 (DRS4), used for sampling the waveform of a Cherenkov signal. In this contribution, we describe the hard- ware design of the LST camera in Section 2, a procedure for low-level calibration in Section 3, and the readout e of the LST camera after the hardware calibration with a dedicated analysis chain in Section 4.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.