We report realizations of OCT combining conventional structural imaging, polarization-sensitive one, as well as allowing for real-time angiographic, elastographic and lymphangiographic modalities with manual-operation capabilities. Among the main features of the developed device one can point out on-flight imaging of microvascular network with feedback for clinicians when performing angiography; in elastography - robust "vector" method of interframe phasevariation gradient estimation and stiffness quantification using reference silicone layers; lymphangiography utilizing pixel statistics beyond conventional amplitude thresholding, etc. These capabilities are ensured by the developed optical schemes of the probe, signal receiving parts, as well as computationally efficient signal processing methods. Examples of the developed device usage in preclinical and clinical applications are discussed (efficient criteria for PDT success; angiographic monitoring of complications during radiotherapy; elastographic classification of tumor and non-tumor regions; detailed imaging of fairly rapid transient and slowly varying deformations in laser-assisted reshaping of collagenous tissues; lymphangiography-based diagnostics in gynecology; otolaryngologic applications for diagnosing inner ear diseases, etc.)
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.