We present a plan for sub/millimeter-wave line intensity mapping (LIM) using an imaging spectrograph based on the Terahertz Integral Field Units with Universal Nanotechnology (TIFUUN) architecture. We aim to measure the dust-enshrouded cosmic star formation rate density within the first 2 billion years by conducting LIM observations of ionized carbon [C II] 158 μm and oxygen [O III] 88 μm lines, redshifted to sub/millimeter wavelengths. The proposed imaging spectrograph will simultaneously observe two frequency bands: Band-1 (139-179 GHz) and Band-2 (248-301 GHz). Each band will feature up to ∼100 imaging pixels (spaxels), with each spaxel having 100 spectral channels, providing a modest spectral resolution (R~500). The total number of detectors (voxels) will reach ~20,000. This dual-band configuration will allow simultaneous measurement of key spectral lines, e.g., [C II] 158 μm and [O III] 88 μm lines at z = 10.2 - 12.6, and CO(4-3), (7-6), [C I](1-0) and (2-1) at z = 1.9 - 2.2, enabling cross-correlation analysis. We will develop data-scientific methods to remove atmospheric noise using sparse modeling and to extract signals from the observed data using deep learning.
We present a conceptual study of a large format imaging spectrograph for next-generation large (50-m class) single-dish telescopes, i.e., the Large Submillimeter Telescope (LST) and Atacama Large Aperture Submillimeter Telescope (AtLAST). Recent discoveries of high-redshift star-forming galaxies at z=8-9 and candidate quiescent galaxies at z~6 indicate the onset of earliest star formation just a few 100 million years after the Big Bang (i.e., z = 12 - 15), and LST/AtLAST will provide a unique pathway to uncover spectroscopically-identified ``first forming galaxies’’ in the pre-reionization era, once it will be equipped with a large format imaging spectrograph. We describe the preliminary of 3-band, medium resolution (R=2000) imaging spectrograph with ~1.5 M detectors in total based on the KATANA concept (Karatsu et al.~2019), which exploits technologies of the integrated superconducting spectrometer (ISS) and a large-format imaging array like A-MKID.
The integrated superconducting spectrometer (ISS) enables ultra-wideband, large field-of-view integral-field-spectrometer designs for mm-submm wave astronomy. DESHIMA 2.0 is a single-pixel ISS spectrometer for the ASTE 10-m telescope, designed to observe the 220-440 GHz band in a single shot, corresponding to a [CII] redshift range of z=3.3-7.6. The first-light experiment of DESHIMA, using a 332-377 GHz configuration has shown excellent consistency between the performance derived from on-sky measurements, lab-measurements and the design. Ongoing upgrades towards the octave-bandwidth full system include the development of a filterbank chip with ~350 channels and higher optical efficiency, a wideband quasioptical design, and observing methods for efficiently removing the atmosphere.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.