Athena, a future high-energy mission, is expected to consist of a large aperture x-ray mirror with a focal length of 12 m. The mirror surface is to be coated with iridium and a low Z overcoat. To define the effective area of the x-ray telescope, the atomic scattering factors of iridium with an energy resolution less than that (2.5 eV) of the x-ray integral field unit are needed. We measured the reflectance of the silicon pore optics mirror plate coated with iridium in the energy range of 9 to 15 keV and that near the iridium L-edges in steps of 10 and 1.5 eV, respectively, at the synchrotron beamline SPring-8. The L3, L2, and L1 edges were clearly detected around 11,215, 12,824, and 13,428 eV, respectively. The measured scattering factors were ∼3 % smaller than the corresponding values reported by Henke et al., likely due to the presence of an overlayer on the iridium coating, and were consistent with those measured by Graessle et al. The angular dependence of the reflectivity measured indicates that the iridium surface was extremely smooth, with a surface roughness of 0.3 nm.
For many years, Wolter mirrors have been used as imaging elements in X-ray telescopes. The shape error of Wolter mirrors fabricated by replicating the shape of a mandrel originates from the replication error in electroforming. We have been developing an X-ray focusing mirror for synchrotron radiation X-rays, as well as a high-precision electroforming process. In this paper, we report on the application of the advanced electroforming process to the fabrication of Wolter mirrors for the FOXSI Sun observation project. We also discuss the figuring accuracy of the mandrel.
We had been developing replicated aluminum foil optics for previous missions such as ASCA, Suzaku, and, Hitomi. This sort of X-ray optics can be lighter but the angular resolution is limited to on the order of arcminutes. Thus, to improve the angular resolution with light performances, we have started developing electro formed X-ray optics. Electroforming is a technology that can transfer to a substrate with high accuracy by plating the nano-level structure of a super-precision master and makes it easier to fabricate Wolter type-I shaped two-stage full-shell mirrors.
Electroforming replication is an essential technique for fabricating full-shell, grazing-incidence mirrors for use in space, laboratories, and synchrotron experiments. For X-ray astronomy, a nickel electroforming replication process was developed and is used to produce lightweight and high-resolution X-ray mirrors. In addition, the electroforming process for fabricating X-ray mirrors for use in synchrotron experiments has undergone remarkable development over the past decade. We expect that the use of the ground-based electroforming replication process for the production of optics for Xray astronomy will lead to further improvements in the performance of X-ray telescopes. This paper describes our ongoing development efforts in the nickel-electroforming replication process, including the results of a pilot study.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.