XRR scans provide detailed insights into thin film properties, however, the dependence on accurate a priori knowledge necessitates a robust model for solving the inverse problem. Addressing this limitation, XPS proves invaluable in revealing the chemical composition of thin films, improving the accuracy of the XRR model. Combined characterization through OM and XRR is very useful to find visual insights into surface contamination-induced changes when mirrors are stored for long periods in a clean room environment, as might be the case for some astronomical missions. The synergy among these techniques is pivotal for evaluating coating quality for high-energy astronomical telescopes, with a specific focus on NewAthena and upcoming missions. This research not only advances methodologies in this field but also highlights the collaborative power of XRR, XPS, and OM in providing a comprehensive understanding of thin film coatings, emphasizing the importance of pre-coating mirror quality and mitigating contamination effects throughout the optics production process to ensure optimal performance.
We present in this paper the status of the optics production and illustrate not only recent X-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of SPO based optics.
The Silicon Pore Optics (SPO) enables the NewAthena mission, delivering an unprecedented combination of good angular resolution, large effective area and low mass. The SPO technology builds significantly on spin-in from the semiconductor industry and is designed to allow a cost-effective flight optics implementation, compliant with the programmatic requirements of the mission.
The NewAthena X-ray optics is highly modular, consisting of hundreds of compact mirror modules arranged in concentric circles and mounted on a metallic optical bench. All aspects of the optics are being developed in parallel, from the industrial production of the mirror plates, over the highly efficient assembly into mirror modules, to the alignment of the mirror modules and their fixation on the optical bench. Dedicated facilities are being built to measure the performance of the NewAthena X-ray telescope optics, demonstrating their compatibility with the environmental and scientific requirements.
An overview is provided of the activities preparing the implementation of the NewATHENA optics.
A key aspect of the thin film coating development for the NewATHENA X–ray optics, is to determine the adhesion efficiency and the residual stress limitation of the coatings on silicon substrates. To do so, we magnetron sputtered different layer thicknesses of chromium layers underneath iridium/carbon bilayer and linear graded multilayer coatings. The samples were characterized using X–ray Reflectometry (XRR) to derive the thickness and micro–roughness. The residual stress was assessed by profilometry using a Dektak 150 stylus profilometer. The curvature of the samples before and after coating, along with the total film thickness derived from XRR, was used to evaluate the residual stress.
All variants are found to produce an effective area at 1 keV of around 1.24 m2, well beyond the scientific requirement of 1.1 m2. All variants are shown, when assuming a perfectly shaped and aligned mirror that is perfectly smooth, to have an intrinsic PSF that is an order of magnitude below the scientific requirement. Comparing these intrinsic PSF’s, the secondary polynomial performs best at energies below 7.5 keV. Above this energy, the equal polynomial variant performs best. A phenomenon is also shown where shifting destructive interference causes periodic peaks and troughs in the PSF HEW of individual rings of the optics, though this effect is not seen in the PSF HEW of the entire optics.
ESA’s Athena mission will use silicon pore optics, in which the optics assembly consists of pairs of mirror plates stacked into mirror modules. This paper presents a study of the angular resolution of Athena, using several candidate variants of mirror curvature and wedging. Results were achieved by ray-tracing these variants of Athena’s optics with the ray-tracing software SPORT.
The study shows that all polynomial variants yield a PSF below 1” on-axis, at all energies between 0.1 and 12 keV. The secondary-only polynomial variants perform best, for both on- and off-axis point sources. Of these variants, the wedging 0/2 variant is shown to generally yield superior angular resolution at higher energies, the -1/1 variant at lower energies.
A ray-tracing analysis using the Crab Nebula as an observation target was also performed. A 2D Fourier analysis was applied to the resulting focal plane responses to determine their angular resolution. This analysis indicates the angular resolution of all polynomial variants to be below 1”, at all but the highest energies. It also shows, though to a lesser extent, that the secondary-only polynomial variants perform best in most circumstances. Nevertheless, this second analysis requires further investigation for a more conclusive outcome.
The next generation x-ray observatory ATHENA (advanced telescope for high energy astrophysics) requires an optics with unprecedented performance. It is the combination of low mass, large effective area and good angular resolution that is the challenge of the x-ray optics of such a mission. ATHENA is the second large class mission in the science programme of ESA, and is currently in a reformulation process, following a design-to-cost approach to meet the cost limit of an ESA L-class mission.
The silicon pore optics (SPO) is the mission enabler being specifically developed for ATHENA, in a joint effort by industry, research institutions and ESA. All aspects of the optics are being addressed, from the mirror plates and their coatings, over the mirror modules and their assembly into the ATHENA telescope, to the facilities required to build and test the flight optics, demonstrating performance, robustness, and programmatic compliance.
The SPO technology is currently being matured to the level required for the adoption of the ATHENA mission, i.e., the start of the mission implementation phase. The monocrystalline silicon material and pore structure of the SPO provide these optics with excellent thermal and mechanical properties. Benefiting from technology spin-in from the semiconductor industry, the equipment, processes, and materials used to produce the SPO are highly sophisticated and optimised.Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA) in collaboration with research institutions and industry, enabling leading-edge future science missions.
Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in observatory class high energy astrophysics missions, aiming at angular resolutions of 5” and providing effective areas of one or more square meters at a few keV.
This paper reports on the development activities led by ESA, and the status of the SPO and SGO technologies, including progress on high performance multilayer reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36].
View contact details