In leading edge patterning processes, overlay is now entangled with CD including OPC residuals and stochastics. This combined effect is a serious challenge for continued shrink and can be characterized with an Edge Placement Error (EPE) budget containing multi-domain components: global and local CD, local placement errors, overlay errors, etch biases and OPC. EPE defines process capability and ultimately relates to device yield. Understanding the EPE budget leads to efficient ways to monitor process capability and optimize it using EPE based process control applications. We examine a critical EPE use case on a leading edge DRAM node. We start by constructing and verifying the EPE Budget via densely sampled on-product in-device local, global CD and Overlay metrology after the etch process step. EPE budget contributors are ranked according to their impact to overall EPE performance and later with simulated EPE performance improvements per component. A cost/benefit analysis is shown to help choose the most HVM-friendly solutions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.