We present the results of modelling of pressure-driven gas flow in a 14.7 meters long nodeless Antiresonant Hollow Core Fiber (ARHCF) for predicting the gas exchange time in the ARHCF-based laser absorption spectroscopy measurement systems. The implemented physical model is based on the Navier-Stokes equations for laminar flow. The tunable diode laser absorption spectroscopy has been used for determining experimentally the ARHCF gas filling time. The obtained results confirmed the requirement for more complex geometric models to properly predict the core filling time of nodeless ARHCFs than a simple, single-channel approach, which can be used effectively for gap-less ARHCFs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.