The extent to which the arbitrarily selected L2 regularization hyperparameter value affects the outcome of semantic segmentation with deep learning is demonstrated. Demonstrations rely on training U-net on small LGEMRI datasets using the arbitrarily selected L2 regularization values. The remaining hyperparameters are to be manually adjusted or tuned only when 10% of all epochs are reached before the training validation accuracy reaches 90%. Semantic segmentation with deep learning outcomes are objectively and subjectively evaluated against the manual ground truth segmentation
This work evaluates deep learning-based myocardial infarction (MI) quantification using Segment cardiovascular magnetic resonance (CMR) software. Segment CMR software incorporates the expectation-maximization, weighted intensity, a priori information (EWA) algorithm used to generate the infarct scar volume, infarct scar percentage, and microvascular obstruction percentage. Here, Segment CMR software segmentation algorithm is updated with semantic segmentation with U-net to achieve and evaluate fully automated or deep learning-based MI quantification. The direct observation of graphs and the number of infarcted and contoured myocardium are two options used to estimate the relationship between deep learning-based MI quantification and medical expertbased results.
A preliminary study of a non-reference aliasing artefact index (AAI) metric is presented in this paper. We focus on the effects of combining a full-reference metric and interpolation algorithm. The nearest neighbor algorithm (NN) is used as the gold standard against which test-algorithms are judged in terms of aliased structures. The structural similarity index (SSIM) metric is used to evaluate a test image (i.e. a test-algorithm’s image) and a reference image (i.e. the NN’s image). Preliminary experiments demonstrated promising effects of the AAI metric against state-of-the-art non-reference metrics mentioned. A new study may further develop the studied metric for potential applications in image quality adaptation and/or monitoring in medical imaging.
Unlike traditional linear interpolation algorithms, which compute all kernel pixels locations, a novel image interpolation algorithm that uses the preliminary pixels kernel and extrapolated pixels adjustment has been proposed for interpolation operations. The proposed interpolation algorithm is mainly based on the weighting functions of the preliminary interpolation kernel and linearly extrapolated pixels adjustments. Experimentally, the proposed method demonstrated generally higher performance than state-of-art algorithms mentioned with objective evaluations as well as comparable performances with subjective evaluations. Potential applications may include the ultrasound scan conversion for displaying the sectored image.
Rescaling bilinear (RB) interpolant’s pixels is a novel image interpolation scheme. In the current study, we investigate the effects on the quality of interpolated images. RB determines the lower and upper bounds using the standard deviation of the four nearest pixels to find the new interval or range that will be used to rescale the bilinear interpolant’s pixels. The products of the rescaled-pixels and corresponding distance-based-weights are added to estimate the new pixel value, to be assigned at the empty locations of the destination image. Effects of RB on image interpolation quality were investigated using standard full-reference and non-reference objective image quality metrics, particularly those focusing on interpolated images features and distortion similarities. Furthermore, variance and mean based metrics were also employed to further investigate the effects in terms of contrast and intensity increment or decrement. The Matlab based simulations demonstrated generally superior performances of RB compared to the traditional bilinear (TB) interpolation algorithm. The studied scheme’s major drawback was a higher processing time and tendency to rely on the image type and/or specific interpolation scaling ratio to achieve superior performances. Potential applications of rescaling based bilinear interpolation may also include ultrasound scan conversion in cardiac ultrasound, endoscopic ultrasound, etc.
This paper proposes a novel enhancement method based exclusively on the bilinear interpolation algorithm for capsule endoscopy images. The proposed method does not convert the original RBG image components to HSV or any other color space or model; instead, it processes directly RGB components. In each component, a group of four adjacent pixels and half-unit weight in the bilinear weighting function are used to calculate the average pixel value, identical for each pixel in that particular group. After calculations, groups of identical pixels are overlapped successively in horizontal and vertical directions to achieve a preliminary-enhanced image. The final-enhanced image is achieved by halving the sum of the original and preliminary-enhanced image pixels. Quantitative and qualitative experiments were conducted focusing on pairwise comparisons between original and enhanced images. Final-enhanced images have generally the best diagnostic quality and gave more details about the visibility of vessels and structures in capsule endoscopy images.
This paper presents a preliminary study of the effect of empty bins on image upscaling in capsule endoscopy. The presented study was conducted based on results of existing contrast enhancement and interpolation methods. A low contrast enhancement method based on pixels consecutiveness and modified bilinear weighting scheme has been developed to distinguish between necessary empty bins and unnecessary empty bins in the effort to minimize the number of empty bins in the input image, before further processing. Linear interpolation methods have been used for upscaling input images with stretched histograms. Upscaling error differences and similarity indices between pairs of interpolation methods have been quantified using the mean squared error and feature similarity index techniques. Simulation results demonstrated more promising effects using the developed method than other contrast enhancement methods mentioned.
NON-SPIE: Artificial Intelligence for Image Processing and Analysis in Medical Imaging
The course offers the fundamentals of artificial intelligence in medical imaging with a focus on the major areas of medical image processing and medical image analysis methodologies that apply artificial intelligence in cardiology, gastroenterology,
NON-SPIE: Artificial Intelligence for Image Processing and Analysis in Medical Imaging
The course offers the fundamentals of artificial intelligence (AI) in medical imaging with a focus on major areas of medical image processing and medical image analysis methodologies that apply AI in cardiology, gastroenterology, and beyond.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.