We investigate the origin of dark current by studying the bulk and surface recombination mechanisms using temperaturedependent minority carrier lifetime measurements of GaAsSb p-i-n devices. We measure the equilibrium carrier concentration (background doping concentration) by transient microwave reflectance and compare with capacitancevoltage measurements. Room temperature minority carrier lifetime results are presented, as well as initial low temperature measurements.
Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.
Surgical interventions for ocular diseases involve manipulations of semi-transparent structures in the eye, but limited
visualization of these tissue layers remains a critical barrier to developing novel surgical techniques and improving clinical
outcomes. We addressed limitations in image-guided ophthalmic microsurgery by using microscope-integrated
multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence
tomography (iSS-SESLO-OCT). We previously demonstrated in vivo human ophthalmic imaging using SS-SESLO-OCT,
which enabled simultaneous acquisition of en face SESLO images with every OCT cross-section. Here, we integrated our
new 400 kHz iSS-SESLO-OCT, which used a buffered Axsun 1060 nm swept-source, with a surgical microscope and
TrueVision stereoscopic viewing system to provide image-based feedback. In vivo human imaging performance was
demonstrated on a healthy volunteer, and simulated surgical maneuvers were performed in ex vivo porcine eyes. Denselysampled
static volumes and volumes subsampled at 10 volumes-per-second were used to visualize tissue deformations and
surgical dynamics during corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations.
En face SESLO images enabled orientation and co-registration with the widefield surgical microscope view while OCT
imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest.
TrueVision heads-up display allowed for side-by-side viewing of the surgical field with SESLO and OCT previews for
real-time feedback, and we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance.
Integration of these complementary imaging modalities may benefit surgical outcomes by enabling real-time intraoperative
visualization of surgical plans, instrument positions, tissue deformations, and image-based surrogate biomarkers correlated
with completion of surgical goals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.