The Vera C. Rubin Observatory is an integrated survey system, currently under construction in Chile, to accomplish a 10-year optical survey of the southern sky. The 8.4-meter Simonyi Survey Telescope mount is nearing completion and undergoing final verification and performance testing. Since the system is optimized for etendue, the telescope mount slewing performance is particularly critical to overall survey efficiency. For example, this high performance mount is required to slew 3.5 degrees, on the sky, and settle in a 4-second period. Here an account of the mount subsystem is presented and selected dynamic performance results from on-site testing are described.
The M2 secondary mirror of the Vera C. Rubin Observatory, scheduled to be commissioned on-sky in 2024, will be the first active secondary mirror of 3.5m diameter in operation. Its substantial dimensions and advanced functionalities place it in league with the secondary mirrors of the upcoming 30m class telescopes. Characterizing its performance serves as a critical step towards comprehending and controlling the optics of the next generation of Extremely Large Telescopes (ELTs). This study focuses on testing and validating the M2 cell in the Observatory’s integration hall and at the Telescope Mount Assembly (TMA). We also report on the integration steps of the M2 cell onto the TMA itself, including installing the light baffle. During the testing campaign, the M2 cell is equipped with an aluminum mirror surrogate for safety reasons regarding the glass mirror. To ensure integrity when the thin glass mirror (10cm) is installed onto the telescope, the M2 support system must be actively controlled during any M2 cell movement. This prompted the development of a dedicated control system to enable closed loop mode for transporting the M2 cell with the glass mirror from the integration hall to the telescope. The tests in the integration hall were conducted with the M2 cell mounted on a rotating cart, allowing different orientations with respect to gravity as it will experience on the telescope. Upon reaching the telescope, static and dynamic tests are conducted at progressively higher telescope performance, increasing slewing speed, acceleration, and jerk. A significant novelty introduced by Rubin to astronomical instrumentation is the Verification & Validation architecture as part of the model-based Systems Engineering approach where requirements, test procedures and executions are merged into an interlaced and dynamic flow. This report presents the experimental results from the distinct test campaigns covering a wide range of M2 cell functionalities. These include characterization of actuator behavior in terms of maximum stroke and force limits, evaluation of closed-loop (active) and open-loop (passive) support system operation for the M2, system settling time and Force Balance response to different slewing speeds of the telescope.
The Simonyi Survey Telescope (formerly known as the Large Synoptic Survey Telescope) of the Rubin Observatory is an 8.4m telescope now in construction on Cerro Pachón, in Chile. This telescope has been designed to conduct a 10 years’ survey of the sky in which it will map the entire night sky every three nights. The Mirror Cell Assembly system is a 9x9m steel structure that provides positioning, support, figure correction and temperature control to the primary and tertiary mirror. It is composed of two main systems, the Support System and the Thermal Control System. The Support System provides positioning, support and figure control of the mirror as well as dynamic forces compensation. The Thermal Control System will control the bulk temperature and temperature variations throughout the mirror. The temperature variations produce thermal distortions of the mirror which produce image degrading distortion of the optical surface. Variations between the bulk temperature and the ambient degrade local seeing and can produce condensation. The mirror cell assembly was designed and build in Tucson, Arizona by the LSST engineering team, and was tested, to confirm correct integration, at the Richard F Caris Mirror Lab to confirm the optical performance of the system using the real glass mirror. After successful testing, the mirror cell assembly was disassembled, packed and shipped to the Cerro Pachón summit in Chile where it was integrated with the surrogate mirror, and installed on the telescope mount assembly (TMA) for system performance test. Once system performance test concluded, the mirror cell was transported to the maintenance level to remove the metal surrogate mirror, install the glass and coat. After coating the mirror, the mirror cell assembly will be integrated with the telescope mount assembly to conduct final testing and verification.
The Vera C. Rubin Observatory is an astronomical survey facility nearing completion in Chile. Its mission is to accomplish the 10-year Legacy Survey of space and Time (LSST) survey - a 6-color optical imaging survey of the southern sky. The science mission for the LSST resulted in demanding requirements for optical performance and system dynamics. Producing a Telescope and an Observatory meeting these requirements resulted in multiple technical challenges which were encountered and resolved during the design and construction of the project. Resolving these challenges has impacted the assembly and integration of the overall system. Analyses were performed and solutions were developed. This paper provides a general overview of these challenges and highlights some specific examples where resolutions were found and implemented.
The Rubin Observatory Commissioning Camera (ComCam) is a scaled down (144 Megapixel) version of the 3.2 Gigapixel LSSTCam which will start the Legacy Survey of Space and Time (LSST), currently scheduled to start in 2024. The purpose of the ComCam is to verify the LSSTCam interfaces with the major subsystems of the observatory as well as evaluate the overall performance of the system prior to the start of the commissioning of the LSSTCam hardware on the telescope. With the delivery of all the telescope components to the summit site by 2020, the team has already started the high-level interface verification, exercising the system in a steady state model similar to that expected during the operations phase of the project. Notable activities include a simulated “slew and expose” sequence that includes moving the optical components, a settling time to account for the dynamical environment when on the telescope, and then taking an actual sequence of images with the ComCam. Another critical effort is to verify the performance of the camera refrigeration system, and testing the operational aspects of running such a system on a moving telescope in 2022. Here we present the status of the interface verification and the planned sequence of activities culminating with on-sky performance testing during the early-commissioning phase.
Adaptive Optics (AO) is an innovative technique that substantially improves the optical performance of groundbased telescopes. The SOAR Adaptive Module (SAM) is a laser-assisted AO instrument, designed to compensate ground-layer atmospheric turbulence in near-IR and visible wavelengths over a large Field of View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is focused on enhancing its performance in visible wavelengths and increasing the instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500 nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40 arcsec, and with the upgrade we expect to deliver images with a FWHM of ≈ 0.34 arcsec - up to 0.23 arcsec FWHM PSF under good seeing conditions. Such capabilities will be fully integrated with the latest SAM instruments, putting SOAR in an unique position as observatory facility.
We present the concept of a new Fabry-Perot instrument called BTFI-2, which is based on the design of another Brazilian instrument for the SOAR Telescope, the Brazilian Tunable Filter Imager (BTFI). BTFI-2 is designed to be mounted on the visitor port of the SOAR Adaptive Module (SAM) facility, on the SOAR telescope, at Cerro Pach´on, Chile. This optical Fabry-Perot instrument will have a field of view of 3 x 3 arcmin, with 0.12 arcsec per pixel and spectral resolutions of 4500 and 12000, at H-alpha, dictated by the two ICOS Fabry-Perot devices available. The instrument will be unique for the study of centers of normal, interacting and active galaxies and the intergalactic medium, whenever spatial resolution over a large area is required. BTFI-2 will combine the best features of two previous instruments, SAM-FP and BTFI: it will use an Electron Multiplication detector for low and fast scanning, it will be built with the possibility of using a new Fabry-Perot etalon which provides a range of resolutions and it will be light enough to work attached to SAM, and hence the output data cubes will be GLAO-corrected.
We present in this paper a performance characterization of an Electron Multiplication CCD (EMCCD) camera which has
been deployed on the Brazilian Tunable Filter Imager (BTFI) instrument for the SOAR telescope in Chile. The BTFI
instrument has two e2v CCD207 EMCCDs with a format of 1600-by-1600 pixels. The CCD207s are full-frame devices
and are read out at a pixel rate of 10MHz with very low noise using an EMCCD controller (the CCD Controller for
Counting Photons or CCCP for short) which was custom-built by a group based in the University of Montreal and is now
commercialized by Nüvü Camēras. The first laboratory characterizations were done in Montreal in October, 2011 and the
"first-light" results with the camera operating at the telescope are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.