We report on a concept of a benchtop microscope for routine applications. This concept system transfers key features of a high-end laser scanning microscope to a dedicated confocal fluorescence imaging system with appropriate footprint and reduced systems complexity. The optical beam path is specifically designed for the purposes of confocal imaging leading to a short beam path length that fulfills the footprint requirements. The system allows an optical 3D scanning through the sample of up to 100 depths of focus without moving the sample. The scanning unit consists of a 2D MEMS scanning mirror spanning and a deformable mirror forming 3 virtual scanning axes. For a compact integration of the detection beam path, a confocal detector with an actuated MEMS pinhole was developed to adjust the optical sectioning. The selected light sources are directly modulated lasers operating at wavelengths that are frequently used for fluorescence imaging in life science applications. To provide a simple interface to almost any user’s hardware such as laptops or tablets, the systems architecture for real time control and data acquisition is based on a FPGA.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.