Shrinking wafer overlay budgets raise the importance of careful characterization and control of the contributing components, a trend accelerated by multi-patterning immersion lithography [1]. Traditionally, the mask contribution to wafer overlay has been estimated from measurement of a relatively small number of standard targets. There are a number of studies on test masks and standard targets of the impact of mask registration on wafer overlay [2],[3]. In this paper, we show the value of a more comprehensive characterization of mask registration on a product mask, across a wide range of spatial frequencies and patterns. The mask measurements will be used to obtain an accurate model to predict mask contribution to wafer overlay and correct for it.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.