Within the ESA PLATO M3 mission, the Telescope Optical Unit (TOU), i.e. the opto-mechanical unit, is a fully refractive optical system. The 26 TOU Flight Models (FM) to be delivered to the upper level, the PLATO Camera, make it a series production. The first Flight Models production faced many initial challenges from a Product Assurance point of view, mostly related to MAIT activities, while moving forward these challenges decreased. Discrepancies and nonconformities associated with, mainly, but not only, materials and processes, cleanliness and contamination control, safety, qualifications and validations, are the object of this proceeding. Thus, showing that serial production adds one more variable to possible failures, but at the same time, when root causes are corrected and solved, yields less difficulties in subsequent FMs MAIT and final production. Product Assurance, in monitoring the product in failure-proofing aspects, aims at mitigating criticalities and arranging for corrective and preventive actions that allow improving the likelihood of success of the mission.
The EnVisS (Entire Visible Sky) instrument is one of the payloads of the European Space Agency Comet Interceptor mission. The aim of the mission is the study of a dynamically new comet, i.e. a comet that never travelled through the solar system, or an interstellar object, entering the inner solar system. As the mission three-spacecraft system passes through the comet coma, the EnVisS instrument maps the sky, as viewed from the interior of the comet tail, providing information on the dust properties and distribution. EnVisS is mounted on a spinning spacecraft and the full sky (i.e. 360°x180°) is entirely mapped thanks to a very wide field of view (180°x45°) optical design selected for the EnVisS camera. The paper presents the design of the EnVisS optical head. A fisheye optical layout has been selected because of the required wide field of view (180°x45°). This kind of layout has recently found several applications in Earth remote sensing (3MI instrument on MetOp SG) and in space exploration (SMEI instrument on Coriolis, MARCI on Mars reconnaissance orbiter). The EnVisS optical head provides a high resolved image to be coupled with a COTS detector featuring 2kx2k pixels with pitch 5.5µm. Chromatic aberration is corrected in the waveband 550-800nm, while the distortion has been controlled over the whole field of view to remain below 8% with respect to an Fθ mapping law. Since the camera will be switched on 24 hours before the comet closest encounter, the operative temperature will change during the approaching phase and crossing of the comet’s coma. In the paper, we discuss the solution adopted for reaching these challenging performances for a space-grade design, while at the same time respecting the demanding small allocated volume and mass for the optical and mechanical design. The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.