The Normal-incidence Extreme Ultraviolet Photometer (NExtUP) is a smallsat mission concept designed to measure the EUV radiation conditions of exoplanet host stars, and F-M type stars in general. EUV radiation is absorbed at high altitude in a planetary atmosphere, in the exosphere and upper thermosphere, where the gas can be readily heated to escape temperatures. EUV heating and ionization are the dominant atmospheric loss drivers during most of a planet’s life. There are only a handful of accurately measured EUV stellar fluxes, all dating from Extreme Ultraviolet Explorer (EUVE) observations in the ‘90s. Consequently, current models of stellar EUV emission are uncertain by more than an order of magnitude and dominate uncertainties in planetary atmospheric loss models. NExtUP will use periodic and aperiodic multilayers on off-axis parabolic mirrors and a prime focus microchannel plate detector to image stars in 5 bandpasses between 150 and 900°A down to flux limits two orders of magnitude lower than reached by EUVE. NExtUP may also accomplish a compelling array of secondary science goals, including using line-of-sight absorption measurements to understand the structure of the local interstellar medium, and imaging EUV emission from energetic processes on solar system objects at unprecedented spatial resolution. NExtUP is well within smallsat weight limits, requires no special orbital conditions, and would be flown on a spacecraft supplied by MOOG Industries. It draws on decades of mission heritage expertise at SAO and LASP, including similar instruments successfully launched and operated to observe the Sun.
The first detected exoplanets found were "hot Jupiters"; these are large Jupiter-like planets in close orbits with their host star. The stars in these so-called "hot Jupiter systems" can have significant X-ray emission and the X-ray flux likely changes the evolution of the overall star-planetary system in at least two ways: (1) the intense high energy flux alters the structure of the upper atmosphere of the planet - in some cases leading to significant mass loss; (2) the angular momentum and magnetic field of the planet induces even more activity on the star, enhancing its X-rays, which are then subsequently absorbed by the planet. If the alignment of the systems is appropriate, the planet will transit the host star. The resulting drop in flux from the star allows us to measure the distribution of the low-density planetary atmosphere. We describe a science mission concept for a SmallSat Exosphere Explorer of hot Jupiters (SEEJ; pronounced "siege"). SEEJ will monitor the X-ray emission of nearby X-ray bright stars with transiting hot Jupiters in order to measure the lowest density portion of exoplanet atmospheres and the coronae of the exoplanet hosts. SEEJ will use revolutionary Miniature X-ray Optics (MiXO) and CMOS X-ray detectors to obtain sufficient collecting area and high sensitivity in a low mass, small volume and low-cost package. SEEJ will observe scores of transits occurring on select systems to make detailed measurements of the transit depth and shape which can be compared to out-of-transit behavior of the target system. The depth and duration of the flux change will allow us to characterize the exospheres of multiple hot Jupiters in a single year. In addition, the long baselines (covering multiple stellar rotation periods) from the transit data will allow us to characterize the temperature, flux and flare rates of the exoplanet hosts at an unprecedented level. This, in turn, will provide valuable constraints for models of atmospheric loss. In this contribution we outline the science of SEEJ and focus on the enabling technologies Miniature X-ray Optics and CMOS X-ray detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.