KEYWORDS: Telescopes, Spectrographs, Calibration, Fabry Perot interferometers, Observatories, Control systems, Sensors, Control software, Equipment, Domes
MARVEL is a new facility at the Roque de los Muchachos Observatory (La Palma) which comprises an array of four 0.8m telescopes, each feeding via fibre link into a single high-resolution spectrograph. The facility will provide dedicated target vetting and follow-up capability to support large exoplanet surveys through radial velocity measurements with precision at the metre-per-second level. The observatory site, with four new domes and a standalone stabilised spectrograph building, will soon be complete and ready for hardware installation and commissioning. Here we present an overview of the facility and a status update on several component subsystems: the telescope hardware, control software, and scheduling software; the fibre injection units at each telescope; the optical and mechanical design and tolerances of the spectrograph and vacuum vessel; the calibration system hardware and calibration strategies; and the progress in development of the instrument’s data reduction pipeline.
The Australian Astronomical Observatory’s (AAO’s) AESOP project is part of the Multi-Object Spectrograph Telescope (4MOST) system for the VISTA telescope. It includes the 2436-fibre positioner, space frame and electronics enclosures. The AESOP concept and the role of the AAO in the 4MOST project have been described in previous SPIE proceedings. The project final assembly stage has recently been completed. In this paper, key results in accurate manufacturing and assembly of critical AESOP components are discussed. The major performance requirement for AESOP is that all 2436 science fibre cores and 12 guide fibre bundles are to be re-positioned to an accuracy of 10 micron within 1 minute. With a fast prime-focus focal-ratio, a close tolerance of +/-70 microns on the axial position of the fibre tips must be held so efficiency does not suffer from de-focus losses. Positioning accuracy is controlled with the metrology cameras installed on the telescope, which measures the positions of the fibre tips to an accuracy of a few micrometers and allows iterative positioning until all fibre tips are within tolerance on the ultimate position. Maintaining co-planarity of the fibre tips requires accurate control in the assembly of several components that contribute to such errors. Overall, the AESOP design fully complies with all its requirements and in most cases achieves its goals. A thorough consideration of all the relevant interfaces during the design and assembly phases, has resulted in comprehensive set of ICDs for the mechanical, electrical and software aspects of AESOP.
The Australian Astronomical Observatory’s (AAO’s) AESOP project is part of the Multi-Object Spectrograph Telescope (4MOST) system for the VISTA telescope. It includes the 2436-fibre positioner, space frame and electronics enclosures. The AESOP concept and the role of the AAO in the 4MOST project have been described in previous SPIE proceedings. The project final assembly stage has been completed. In this paper, engineering principles applied during assembly of critical components and testing of the instrument are discussed. The major performance requirement for AESOP is that all 2436 science fiber cores and 12 guide fiber bundles are to be re-positioned to an accuracy of 10 micron within 1 minute. With a fast prime-focus focal-ratio, a close tolerance on the axial position of the fiber tips must be held so efficiency does not suffer from de-focus losses. Positioning accuracy is controlled with the metrology cameras installed on the telescope, which measures the positions of the fiber tips to an accuracy of a few micrometers and allows iterative positioning until all fiber tips are within tolerance on the focal surface plane. Maintaining co-planarity of the fiber tips requires accurate control in the assembly of several components that contribute to such errors. AESOP requires a consistent production of high accuracy components and assemblies in a quantity of above 2500 items. To achieve this, we had to apply the highest engineering standards, including assembly procedures, metrology, and control systems. We designed many jigs and fixtures, which enabled us to produce high quality components and assemblies at reasonable cost. The results – working instrument was vastly achieved with the help of university students after providing a training in engineering practices.
In this paper we present recent progress on the Australian Astronomical Observatory’s AESOP2 fiber positioner for 4MOST (on VISTA). As an evolution of the Echidna “spine” technology used for FMOS (on Subaru), AESOP has challenging requirements to position 2,448 fibers in parallel, within 1 minute, to an accuracy of < 10 um RMS. AESOP successfully passed ESO’s official final design review and manufacturing has commenced. We present performance results from the first batch of newly-manufactured positioners and also report on how the AESOP project is tracking in terms of schedule, budget and risk.
The Australian Astronomical Observatory’s (AAO’s) AESOP project is part of the 4 metre Multi-Object Spectrograph Telescope (4MOST) system for the VISTA telescope. It includes the 2436-fiber positioner, space frame and electronics enclosures. The AESOP concept and the role of the AAO in the 4MOST project have been described in previous SPIE proceedings. Prototype tests, which were completed early in 2017 demonstrated that the instrument requirements are satisfied by the design. The project final design stage has recently been completed. In this paper, key features of the AESOP positioning system design, along with the techniques developed to overcome key mechanical, electronic, and software engineering challenges are described. The major performance requirement for AESOP is that all 2436 science fiber cores and 12 guide fiber bundles are to be re-positioned to an accuracy of 10 µm within 1 minute. With a fast prime-focus focal-ratio, a close tolerance on the axial position of the fiber tips must be held so efficiency does not suffer from de-focus losses. Positioning accuracy is controlled with the metrology cameras installed on the telescope, which measures the positions of the fiber tips to an accuracy of a few µm and allows iterative positioning until all fiber tips are within tolerance. Maintaining co-planarity of the fiber tips requires accurate control in the assembly of several components that contribute to such errors. Assembly jigs have been developed and proven adequate for this purpose. Attaining high reliability in an assembly with many small components of disparate materials bonded together, including piezo ceramics, carbon fiber reinforced plastic, hardened steel, and electrical circuit boards, has entailed careful selection and application of cements and tightly controlled soldering for electrical connections.
The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V=14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 and 1000 nm for up to 392 simultaneous targets within the 2-degree field of view. HERMES has been commissioned over three runs, during bright time in October, November, and December 2013, in parallel with the beginning of the GALAH pilot survey, which started in November 2013. We present the first-light results from the commissioning run and the beginning of the GALAH survey, including performance results such as throughput and resolution, as well as instrument reliability.
MANIFEST is a fibre feed system for the Giant Magellan Telescope that, coupled to the seeing-limited instruments
GMACS and G-CLEF, offers qualitative and quantitative gains over each instrument’s native capabilities in terms of
multiplex, field of view, and resolution. The MANIFEST instrument concept is based on a system of semi-autonomous
probes called “Starbugs” that hold and position hundreds of optical fibre IFUs under a glass field plate placed at the
GMT Cassegrain focal plane. The Starbug probes feature co-axial piezoceramic tubes that, via the application of
appropriate AC waveforms, contract or bend, providing a discrete stepping motion. Simultaneous positioning of all
Starbugs is achieved via a closed-loop metrology system.
We present advances in the patented Echidna 'tilting spine' fiber positioner technology that has been in operation since 2007 on the SUBARU telescope in the FMOS system. The new Echidna technology is proposed to be implemented on two large fiber surveys: the Dark Energy Spectroscopic Instrument (DESI) (5000 fibers) as well the Australian ESO Positioner (AESOP) for 4MOST, a spectroscopic survey instrument for the VISTA telescope (~2500 fibers). The new 'superspine' actuators are stiffer, longer and more accurate than their predecessors. They have been prototyped at AAO, demonstrating reconfiguration times of ~15s for errors of <5 microns RMS. Laboratory testing of the prortotype shows accurate operation at temperatures of -10 to +30C, with an average heat output of 200 microwatts per actuator during reconfiguration. Throughput comparisons to other positioner types are presented, and we find that losses due to tilt will in general be outweighed by increased allocation yield and reduced fiber stress FRD. The losses from spine tilt are compensated by the gain in allocation yield coming from the greater patrol area, and quantified elsewhere in these proceedings. For typical tilts, f-ratios and collimator overspeeds, Echidna offers a clear efficiency gain versus current r-that or theta-phi positioners.
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for
the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed
understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of
the GALAH survey is to reconstruct the mass assembly history of the of the Milky Way, through a detailed spatially
tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is
fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral
resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000
using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral
coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2
degree field of view. Hermes has been commissioned over 3 runs, during bright time in October, November and
December 2013, in parallel with the beginning of the GALAH Pilot survey starting in November 2013. In this paper we
present the first-light results from the commissioning run and the beginning of the GALAH Survey, including
performance results such as throughput and resolution, as well as instrument reliability. We compare the abundance
calculations from the pilot survey to those in the literature.
The KOALA optical fibre feed for the AAOmega spectrograph has been commissioned at the Anglo-Australian
Telescope. The instrument samples the reimaged telescope focal plane at two scales: 1.23 arcsec and 0.70 arcsec per
image slicing hexagonal lenslet over a 49x27 and 28x15 arcsec field of view respectively. The integral field unit consists
of 2D hexagonal and circular lenslet arrays coupling light into 1000 fibres with 100 micron core diameter. The fibre run
is over 35m long connecting the telescope Cassegrain focus with the bench mounted spectrograph room where all fibres
are reformatted into a one-dimensional slit. Design and assembly of the KOALA components, engineering challenges
encountered, and commissioning results are discussed.
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an optical spectrograph designed
primarily for the GALAH, Galactic Archeology Survey, the first major attempt to create a detailed understanding of
galaxy formation and evolution by studying the history of our own galaxy, the Milky Way1. The goal of the GALAH
survey is to reconstruct the mass assembly history of the of the Milky way, through a detailed spatially tagged
abundance study of one million stars in the Milky Way. The spectrograph will be based at the Anglo Australian
Telescope (AAT) and be fed with the existing 2dF robotic fibre positioning system. The spectrograph uses VPH-gratings
to achieve a spectral resolving power of 28,000 in standard mode and also provides a high resolution mode ranging
between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 aiming for a star
brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to
392 simultaneous targets within the 2 degree field of view.
Current efforts are focused on manufacturing and integration. The delivery date of spectrograph at the telescope is
scheduled for 2013. A performance prediction is presented and a complete overview of the status of the HERMES
spectrograph is given. This paper details the following specific topics:
The approach to AIT, the manufacturing and integration of the large mechanical frame, the opto-mechanical slit
assembly, collimator optics and cameras, VPH gratings, cryostats, fibre cable assembly, instrument control hardware and
software, data reduction.
We present a concept for a 4000-fibre positioner for DESpec, based on the Echidna ‘tilting spine’ technology. The DESpec focal plane is 450mm across and curved, and the required pitch is ~6.75mm. The size, number of fibers and curvature are all comparable with various concept studies for similar instruments already undertaken at the AAO, but present new challenges in combination. A simple, low-cost, and highly modular design is presented, consisting of identical modules populated by identical spines. No show-stopping issues in accommodating either the curvature or the smaller pitch have been identified, and the actuators consist largely of off-the-shelf components. The actuators have been prototyped at AAO, and allow reconfiguration times of ~15s to reach position errors 7 microns or less. Straightforward designs for metrology, acquisition, and guiding are also proposed. The throughput losses of the entire positioner system are estimated to be ~15%, of which 6.3% is attributable to the tilting-spine technology.
KOALA, the Kilofibre Optimised Astronomical Lenslet Array, is a wide-field, high efficiency integral field unit
being designed for use with the bench mounted AAOmega spectrograph on the AAT. KOALA will have 1000
fibres in a rectangular array with a selectable field of view of either 1390 or 430 sq. arcseconds with a spatial
sampling of 1.25" or 0.7" respectively. To achieve this KOALA will use a telecentric double lenslet array with
interchangeable fore-optics. The IFU will feed AAOmega via a 31m fibre run. The efficiency of KOALA is
expected to be ≈ 52% at 3700A and ≈ 66% at 6563°Å with a throughput of > 52% over the entire wavelength
range.
The Australian Astronomical Observatory is building a 4-channel VPH-grating High Efficiency and Resolution Multi
Element Spectrograph (HERMES) for the 3.9 meter Anglo-Australian Telescope (AAT). HERMES will provide a
nominal spectral resolving power of 28,000 for Galactic Archaeology with an optional high-resolution mode of 45,000
with the use of a slit mask.
HERMES is fed by a fibre positioning robot called 2dF at the telescope prime focus. There are a total of 784 science
fibres, which interface with the spectrograph via two separate slit body assemblies, each comprising of 392 science
fibers. The slit defines the spectral lines of 392 fibres on the detector. The width of the detector determines the spectral
bandwidth and the detector height determines the fibre to fibre spacing or cross talk. Tolerances that follow from this are
all in the 10 micrometer range.
The slit relay optics must contribute negligibly to the overall image quality budget and uniformly illuminate the
spectrograph exit pupil. The latter requirement effectively requires that the relay optics provide a telecentric input at the
collimator entrance slit. As a result it is critical to align the optical components to extreme precision required by the
optical design.
This paper discusses the engineering challenges of designing, optimising, tolerancing and manufacturing of very precise
mechanical components for housing optics and the design of low cost of jigs and fixtures for alignment and assembly of
the optics.
First light from the SAMI (Sydney-AAO Multi-object IFS) instrument at the Anglo-Australian Telescope (AAT) has
recently proven the viability of fibre hexabundles for multi-IFU spectroscopy. SAMI, which comprises 13 hexabundle
IFUs deployable over a 1 degree field-of-view, has recently begun science observations, and will target a survey of
several thousand galaxies. The scientific outputs from such galaxy surveys are strongly linked to survey size, leading the
push towards instruments with higher multiplex capability. We have begun work on a new instrument concept, called
Hector, which will target a spatially-resolved spectroscopic survey of up to one hundred thousand galaxies. The key
science questions for this instrument concept include how do galaxies get their gas, how is star formation and nuclear
activity affected by environment, what is the role of feedback, and what processes can be linked to galaxy groups and
clusters. One design option for Hector uses the existing 2 degree field-of view top end at the AAT, with 50 individual
robotically deployable 61-core hexabundle IFUs, and 3 fixed format spectrographs covering the visible wavelength range
with a spectral resolution of approximately 4000. A more ambitious option incorporates a modified top end at the AAT
with a new 3 degree field-of-view wide-field-corrector and 100 hexabundle IFUs feeding 6 spectrographs.
The Australian Astronomical Observatory (AAO) has recently completed a feasibility study for a fiber-positioner facility proposed for the Giant Magellan Telescope (GMT), called MANIFEST (the Many Instrument Fiber System). The MANIFEST instrument takes full advantage of the wide-field focal plane to efficiently feed other instruments. About 2000 individually deployable fiber units are envisaged, with a wide variety of aperture types (single-aperture, image- or pupil-slicing, IFU). MANIFEST allows (a) full use of the GMT's 20' field-of-view, (b) a multiplexed IFU capability, (c) greatly increased spectral resolution via image-slicing, (d) the possibility of OH-suppression in the near-infrared.
Starbugs are miniature piezoelectric 'walking' robots with the ability to simultaneously position many optical fibres
across a telescope's focal plane. Their simple design incorporates two piezoceramic tubes to form a pair of concentric
'legs' capable of taking individual steps of a few microns, yet with the capacity to move a payload several millimetres
per second. The Australian Astronomical Observatory has developed this technology to enable fast and accurate field
reconfigurations without the inherent limitations of more traditional positioning techniques, such as the 'pick and place'
robotic arm. We report on our recent successes in demonstrating Starbug technology, driven principally by R&D efforts
for the planned MANIFEST (many instrument fibre-system) facility for the Giant Magellan Telescope. Significant
performance gains have resulted from improvements to the Starbug system, including i) the use of a vacuum to attach
Starbugs to the underside of a transparent field plate, ii) optimisation of the control electronics, iii) a simplified
mechanical design with high sensitivity piezo actuators, and iv) the construction of a dedicated laboratory 'test rig'. A
method of reliably rotating Starbugs in steps of several arcminutes has also been devised, which integrates with the pre-existing
x-y movement directions and offers greater flexibility while positioning. We present measured performance data
from a prototype system of 10 Starbugs under full (closed-loop) control, at field plate angles of 0-90 degrees.
Following the successful commissioning of SAMI (Sydney-AAO Multi-object IFU) the AAO has undertaken concept
studies leading to a design of a new instrument for the AAT (Hector). It will use an automated robotic system for the
deployment of fibre hexabundles to the focal plane. We have analysed several concepts, which could be applied in the
design of new instruments or as a retrofit to existing positioning systems. We look at derivatives of Starbugs that could
handle a large fibre bundle as well as modifications to pick and place robots like 2dF or OzPoz. One concept uses large
magnetic buttons that adhere to a steel field plate with substantial force. To move them we replace the gripper with a
pneumatic device, which engages with the button and injects it with compressed air, thus forming a magnet preloaded air
bearing allowing virtually friction-less repositioning of the button by a gantry or an R-Theta robot. New fibre protection,
guiding and retraction systems are also described. These developments could open a practical avenue for the upgrade to a
number of instruments.
We report on the development of the fibre slit for the High Efficiency and Resolution Multi Element Spectrograph
(HERMES). This paper discusses the design, mounting and alignment techniques of 784 science fibres and the
magnificatin optics divided among two slit bodies. The measured performance of the fiber bundle shows an increased
throughput of 50% in the existing AAOmega spectrograph using the same fiber mounting techniques.
We report on the technological achievements of our latest Starbug prototypes and their implications for smart focal plane
fiber positioning applications for wide-field astronomy. The Starbugs are innovative self-motile miniature robotic
devices that can simultaneously and independently position fibers or payloads over a field plate located at the telescope's
focal plane. The Starbugs concept overcomes many of the limitations associated with the traditional 'pick and place'
positioners where a robot places fixed buttons onto the field plate. The new Starbug prototypes use piezoelectric
actuators and have the following features: (i) new 'lift-and-step' method (discrete step) for accurate positioning over
different surfaces; and (ii) operate in an inverted hanging position underneath a transparent field plate, removing the need
for fibercable retractors. In this paper, we present aspects of the Starbug prototypes, including the theoretical model,
mechanical design, experimental setup, algorithms, performance and applications for astronomical instrumentation.
MANIFEST (the Many Instrument Fiber System) is a proposed fiber-positioner for the GMT, capable of feeding other
instruments as needed. It is a simple, flexible and modular design, based on the AAO's Starbugs, the University of
Sydney's Hexabundles, and extensive use of standard telecommunications fiber technology. Up to 2000 individually
deployable fiber units are envisaged, with a wide variety of aperture types (single-aperture, image-slicing, IFU).
MANIFEST allows (a) full use of the GMT's 20' field-of-view, (b) a multiplexed IFU capability, (c) greatly increased
spectral resolution via image-slicing, (d) efficient detector packing both spectrally and spatially, (e) the possibility of
OH-suppression in the near-infrared. Together, these gains make GMT the most powerful of the ELT's for wide-field
spectroscopy. It is intended that MANIFEST will form part of the GMT facility itself, available to any instrument able
to make use of it.
The AAO is building an optical high resolution multi-object spectrograph for the AAT for Galactic Archaeology. The
instrument has undergone significant design revision over that presented at the 2008 Marseilles SPIE meeting. The
current design is a 4-channel VPH-grating based spectrograph providing a nominal spectral resolving power of 28,000
and a high-resolution mode of 45,000 with the use of a slit mask. The total spectral coverage is about 1000 Angstroms
for up to 392 simultaneous targets within the 2 degree field of view. Major challenges in the design include the
mechanical stability, grating and dichroic efficiencies, and fibre slit relay implementation. An overview of the current
design and discussion of these challenges is presented.
We describe the design of a new CCD system delivered to the Automated Patrol Telescope at Siding Springs NSW
Australia operated by UNSW. A very fast beam (f/1) with a mosaic of two MITLL CCID-34 detectors placed only 1
mm behind the field flattener which also serves as the dewar window, have called for innovative engineering solutions.
This paper describes the design and procedure of the field-flattener mounting, differential screw adjustable detector
mount and dewar suspension on the external ring providing tip/tilt and focus adjustment.
Echidna is a fiber positioner designed and built by the Anglo-Australian Observatory using novel technology
to position 400 fibers in the prime focus field of the Subaru telescope. The fibers feed two near infrared OH-suppression
spectrographs, the whole project being known as Fiber Multi Object Spectrograph (FMOS). In order
to accommodate the large number of the fibers in the physically limited area, a new fiber positioning method is
developed. Stand-alone tests of the positioner at sea level confirm its performance is fully satisfactory. Initial
results and prospects of the on-sky commissioning tests of the positioner are also described.
PILOT (the Pathfinder for an International Large Optical Telescope) is a proposed Australian/European optical/infrared
telescope for Dome C on the Antarctic Plateau, with target first light in 2012. The telescope is 2.4m diameter, with
overall focal ratio f/10, and a 1 degree field-of-view. It is mounted on a 30m tower to get above most of the turbulent
surface layer, and has a tip-tilt secondary for fast guiding. In median seeing conditions, it delivers 0.3" FWHM wide-field
image quality, from 0.7-2.5 microns. In the best quartile of conditions, it delivers diffraction-limited imaging down
to 1 micron, or even less with lucky imaging. The major challenges have been (a) preventing frost-laden external air
reaching the optics, (b) overcoming residual surface layer turbulence, (c) keeping mirror, telescope and dome seeing to
acceptable levels in the presence of large temperature variations with height and time, (d) designing optics that do
justice to the site conditions. The most novel feature of the design is active thermal and humidity control of the
enclosure, to closely match the temperature of external air while preventing its ingress.
As part of the Starbug development, a range of actuator technologies have been prototyped and trialled in the quest to
develop this novel focal plane positioning system. The Starbug concept is a robotic positioning system that deploys
multiple payloads, such as pickoff optics, optical fibres and other possible devices to micron level accuracy over a flat or
curved focal plane. The development is aimed at addressing some of the limitations of other positioning systems to
provide a reliable, cost effective way of positioning multiple payloads in ambient and cryogenic environments. In this
paper we identify the specification and required characteristics of the micro-robotic actuators as applied to the MOMSI
instrument concept, present descriptions of some of the prototypes along with the results from characterisation and
performance tests. These tests were undertaken at various orientations and temperatures as well as using different
actuator concepts.
The Anglo-Australian Observatory's (AAO's) FMOS-Echidna project is for the Fiber Multi-Object Spectroscopy system for the Subaru Telescope. It includes three parts: the 400-fiber positioning system, the focal plane imager (FPI) and the prime focus corrector. The Echidna positioner concept and the role of the AAO in the FMOS project have been described in previous SPIE proceedings. The many components for the system are now being manufactured, after prototype tests have demonstrated that the required performance will be achieved. In this paper, the techniques developed to overcome key mechanical and electronic engineering challenges for the positioner and the FPI are described. The major performance requirement is that all 400 science fiber cores and up to 14 guide fiber bundles are to be re-positioned to an accuracy of 10μm within 10 minutes. With the fast prime focus focal ratio, a close tolerance on the axial position of the fiber tips must also be held so efficiency does not suffer from de-focus. Positioning accuracy is controlled with the help of the FPI, which measures the positions of the fiber tips to an accuracy of a few μm and allows iterative positioning. Maintaining fiber tips sufficiently co-planar requires accurate control in the assembly of the several components that contribute to such errors. Assembly jigs have been developed and proven adequate for this purpose. Attaining high reliability in an assembly with many small components of disparate materials bonded together, including piezo ceramics, carbon fiber reinforced plastic, hardened steel, and electrical circuit boards, has entailed careful selection and application of cements and tightly controlled soldering for electrical connections.
A wide range of positioning technologies has been exploited to flexibly configure fiber ends on the focal surfaces of telescopes. The earliest instruments used manual plugging, or glued buttons on the focal plane. Later instruments have used robotic fisherman-round-the-pond probes and articulated armsto position fibres, each probe or arm operated by its own motors, or buttons on fiber ends moved by pick-and-place robotic positioners. A positioner using fiber spines incorporating individual actuators operating over limited patrol areas is currently being manufactured and a derivative proposed for future large telescopes. Other techniques, using independent agents carrying the fiber ends about the focal plane have been prototyped. We describe these various fiber positioning techniques and compare them, listing the issues associated with their implementation, and consider the factors which make each of them suitable for a given situation. Factors considered include: robot geometries; costs; inherent limits to the number of fibers; clustering of targets; serial and parallel positioning and reconfiguration times; adaptability to curved focal surfaces; the virtues of on-telescope versus off-telescope configuration of the field, and suitability for the various telescope foci. The design issues include selection of actuators and encoding systems, counterbalancing, configuration of fiber buttons and their associated grippers, interchanging field plates, and the need for fiber retractors. Finally we consider the competing technologies: fiber and reflective image slicer IFUs, multislit masks and reconfigurable slits.
The Fibre Multi-Object Spectrograph (FMOS) is a second-generation common-use instrument of the Subaru telescope. Under an international collaboration scheme of Japan, UK, and Australia, a realistic design of FMOS has been already in completion, and the fabrications of hardware components have been in progress. We present the overall design details together with the special features of FMOS subsystems, such as the prime focus corrector, the prime focus mechanical unit including fiber positioners, and the near-infrared spectrograph, etc.
The Fiber Multi-Object Spectrograph (FMOS) project is an Australia-Japan-UK collaboration to design and build a novel 400 fiber positioner feeding two near infrared spectrographs from the prime focus of the Subaru telescope. The project comprises several parts. Those under design and construction at the Anglo-Australian Observatory (AAO) are the piezoelectric actuator driven fiber positioner (Echidna), a wide field (30 arcmin) corrector and a focal plane imager (FPI) used for controlling the positioner and for field acquisition. This paper presents an overview of the AAO share of the FMOS project. It describes the technical infrastructure required to extend the single Echidna "spine" design to a fully functioning multi-fiber instrument, capable of complete field reconfiguration in less than ten minutes. The modular Echidna system is introduced, wherein the field of view is populated by 12 identical rectangular modules, each positioning 40 science fibers and 2 guide fiber bundles. This arrangement allows maintenance by exchanging modules and minimizes the difficulties of construction. The associated electronics hardware, in itself a significant challenge, includes a 23 layer PCB board, able to supply current to each piezoelectric element in the module. The FPI is a dual purpose imaging system translating in two coordinates and is located beneath the assembled modules. The FPI measures the spine positions as well as acquiring sky images for instrument calibration and for field acquisition. An overview of the software is included.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.