Son of X-Shooter (SOXS) will be a high-efficiency spectrograph with a mean Resolution-Slit product of 4500 (goal 5000) over the entire band capable of simultaneously observing the complete spectral range 350-2000 nm. It consists of three scientific arms (the UV-VIS Spectrograph, the NIR Spectrograph and the Acquisition Camera) connected by the Common Path system to the NTT and the Calibration Unit. The Common Path is the backbone of the instrument and the interface to the NTT Nasmyth focus flange. The light coming from the focus of the telescope is split by the common path optics into the two different optical paths in order to feed the two spectrographs and the acquisition camera. The instrument project went through the Preliminary Design Review in 2017 and is currently in Final Design Phase (with FDR in July 2018). This paper outlines the status of the Common Path system and is accompanied by a series of contributions describing the SOXS design and properties after the instrument Preliminary Design Review.
KEYWORDS: Electronics, Control systems, Switches, Photonic integrated circuits, Computer programming, Near infrared, Data transmission, Sensors, Power supplies, Spectrographs
SOXS (Son Of X-Shooter) is a unique spectroscopic facility that will operate at the ESO New Technology Telescope (NTT) in La Silla from 2021 onward. The spectrograph will be able to cover simultaneously the UV-VIS and NIR bands exploiting two different arms and a Common Path feeding system. We present the design of the SOXS instrument control electronics. The electronics controls all the movements, alarms, cabinet temperatures, and electric interlocks of the instrument. We describe the main design concept. We decided to follow the ESO electronic design guidelines to minimize project time and risks and to simplify system maintenance. The design envisages Commercial Off-The-Shelf (COTS) industrial components (e.g. Beckhoff PLC and EtherCAT fieldbus modules) to obtain a modular design and to increase the overall reliability and maintainability. Preassembled industrial motorized stages are adopted allowing for high precision assembly standards and a high reliability. The electronics is kept off-board whenever possible to reduce thermal issues and instrument weight and to increase the accessibility for maintenance purpose. The instrument project went through the Preliminary Design Review in 2017 and is currently in Final Design Phase (with FDR in July 2018). This paper outlines the status of the work and is part of a series of contributions describing the SOXS design and properties after the instrument Preliminary Design Review.
SOXS will be a unique spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands thanks to two different arms: the UV-VIS (350-850 nm), and the NIR (800-1800 nm). In this article, we describe the design of the visible camera cryostat and the architecture of the acquisition system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom detector head coupled with the ESO continuous flow cryostats (CFC) cooling system and the NGC CCD controller developed by ESO. This paper outlines the status of the system and describes the design of the different parts that made up the UV-VIS arm and is accompanied by a series of contributions describing the SOXS design solutions (Ref. 1–12).
SOXS (Son Of X-Shooter) is a new spectrograph for the ESO NTT telescope, currently in the final design phase. The main instrument goal is to allow the characterization of transient sources based on alerts. It will cover from near-infrared to visible bands with a spectral resolution of R ∼ 4500 using two separate, wavelength-optimized spectrographs. A visible camera, primarily intended for target acquisition and secondary guiding, will also provide a scientific “light” imaging mode. In this paper we present the current status of the design of the SOXS instrument control software, which is in charge of controlling all instrument functions and detectors, coordinating the execution of exposures, and implementing all observation, calibration and maintenance procedures. Given the extensive experience of the SOXS consortium in the development of instruments for the VLT, we decided to base the design of the Control System on the same standards, both for hardware and software control. We illustrate the control network, the instrument functions and detectors to be controlled, the overall design of SOXS Instrument Software (INS) and its main components. Then, we provide details about the control software for the most SOXS-specific features: control of the COTS-based imaging camera, the flexures compensation system and secondary guiding.
Son Of X-Shooter (SOXS) is the new instrument for the ESO 3.5 m New Technology Telescope (NTT) in La Silla site (Chile) devised for the spectroscopic follow-up of transient sources. SOXS is composed by two medium resolution spectrographs able to cover the 350-2000 nm interval. An Acquisition Camera will provide a light imaging capability in the visible band. We present the procedure foreseen for the Assembly, Integration and Test activities (AIT) of SOXS that will be carried out at sub-systems level at various consortium partner premises and at system level both in Europe and Chile.
SOXS (Son of X-shooter) is a wide band, medium resolution spectrograph for the ESO NTT with a first light expected in early 2021. The instrument will be composed by five semi-independent subsystems: a pre-slit Common Path (CP), an Acquisition Camera (AC), a Calibration Unit (CU), the NIR spectrograph, and the UV-VIS spectrograph. In this paper, we present the mechanical design of the subsystems, the kinematic mounts developed to simplify the final integration procedure and the maintenance. The concept of the CP and NIR optomechanical mounts developed for a simple pre- alignment procedure and for the thermal compensation of reflective and refractive elements will be shown.
The Son Of X-Shooter (SOXS)1 is a medium resolution spectrograph (R ~ 4500) proposed for the ESO 3.6m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m = 1) as the main dispersers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is > 60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings2-10 describing the full SOXS instrument.
We present the NIR spectrograph of the Son Of XShooter (SOXS) instrument for the ESO-NTT telescope at La Silla (Chile). SOXS is a R~4,500 mean resolution spectrograph, with a simultaneously coverage from about 0.35 to 2.00 μm. It will be mounted at the Nasmyth focus of the NTT. The two UV-VIS-NIR wavelength ranges will be covered by two separated arms. The NIR spectrograph is a fully criogenic echelle-dispersed spectrograph, working in the range 0.80- 2.00 μm, equipped with an Hawaii H2RG IR array from Teledyne, working at 40 K. The spectrograph will be cooled down to about 150 K, to lower the thermal background, and equipped with a thermal filter to block any thermal radiation above 2.0 μm. In this poster we will show the main characteristics of the instrument along with the expected performances at the telescope.
SOXS (Son of X-Shooter) will be the new medium resolution (R~4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.
SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid and longer term Target of Opportunity requests on a variety of astronomical objects. SOXS will observe all kind of transient and variable sources from different surveys. These will be a mixture of fast alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by passage of minor bodies). While the focus is on transients and variables, still there is a wide range of other astrophysical targets and science topics that will benefit from SOXS. The design foresees a spectrograph with a Resolution-Slit product ≈ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. The limiting magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified from on-going imaging surveys. Light imaging capabilities in the optical band (grizy) are also envisaged to allow for multi-band photometry of the faintest transients. This paper outlines the status of the project, now in Final Design Phase.
An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spectroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the ‘4C’ design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions1-9 describing the SOXS design and properties as it is about to face the Final Design Review.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.