The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument designed for the eXTP (enhanced Xray Timing and Polarimetry) mission, a major project of the Chinese Academy of Sciences and China National Space Administration. The eXTP science case involves the study of matter under extreme conditions of gravity, density and magnetism. The eXTP mission is currently performing a phase B study, expected to be completed by the end of 2024. The target launch date is end-2029. Until recently, the eXTP scientific payload included four instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The mission designed was however rescoped in early 2024 to meet the programmatic requirements of a final mission adoption in the context of the Chinese Academy of Sciences. Negotiations are still ongoing at agency level to assess the feasibility of a European participation to the payload implementation, by providing the LAD and WFM instruments, through a European Consortium composed of institutes from Italy, Spain, Austria, Czech Republic, Denmark, France, Germany, Netherlands, Poland, Switzerland and Turkey. At the time of writing, the LAD instrument is thus a scientific payload proposed for inclusion on eXTP. The LAD instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA-M3 context. The eXTP/LAD envisages a deployed >3 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we provide an overview of the LAD instrument design and the status of its maturity when approaching nearly the end of its phase B study.
The Enhanced X-ray Timing and Polarimetry (eXTP) mission is a flagship astronomy mission led by the Chinese Academy of Sciences (CAS) and scheduled for launch in 2029. The Large Area Detector (LAD) is one of the instruments on board eXTP and is dedicated to studying the timing of X-ray sources with unprecedented sensitivity. The development of the eXTP LAD involves a significant mass production of elements to be deployed in a significant number of countries (Italy, Austria, Germany, Poland, China, Czech Republic, France). This feature makes the Manufacturing, Assembly, Integration and Test (MAIT), Verification and Calibration the most challenging and critical tasks of the project. An optimized Flight Model (FM) implementation plan has been drawn up, aiming at a production rate of 2 Modules per week. This plan is based on the interleaving of a series of parallel elementary activities in order to make the most efficient use of time and resources and to ensure that the schedule is met.
HERMES (High Energy Rapid Modular Ensemble of Satellites) Pathfinder is a space-borne mission based on a constellation of six nano-satellites flying in a low-Earth orbit (LEO). The 3U CubeSats, to be launched in early 2025, host miniaturized instruments with a hybrid Silicon Drift Detector/GAGG:Ce scintillator photodetector system, sensitive to X-rays and gamma-rays in a large energy band. HERMES will operate in conjunction with Australian Space Industry Responsive Intelligent Thermal (SpIRIT) 6U CubeSat, launched in December 2023. HERMES will probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs), ensuring a fast transient localization in a field of view of several steradians exploiting the triangulation technique. HERMES intrinsically modular transient monitoring experiment represents a keystone capability to complement the next generation of gravitational wave experiments. In this paper we outline the scientific case, development and programmatic status of the mission.
To achieve accurate detection of different space x-ray sources, three types of filters are designed for the follow-up x-ray telescope onboard the Einstein probe (EP). Two of them are supported by PI mesh and Ni stiffener, which are studied in this paper. Since visible light blocking performance of these filters is important for x-ray detection, the transmittance and visible light irradiation damage performance of them are measured and presented. With a self-built double-beam laser system, the detection sensitivity of transmittance at 532 nm is increased to 10 − 9 compared with 10 − 5 for the spectrophotometer. Moreover, the tests of visible light irradiation damage performance under vacuum and air conditions have been carried out using this system, which proves that the filters have good reliability. Finally, the topography of these filters is studied and described with a microscope.
The enhanced x-ray timing and polarimetry mission (eXTP) is a flagship observatory for x-ray timing, spectroscopy and polarimetry developed by an international consortium. Thanks to its very large collecting area, good spectral resolution and unprecedented polarimetry capabilities, eXTP will explore the properties of matter and the propagation of light in the most extreme conditions found in the universe. eXTP will, in addition, be a powerful x-ray observatory. The mission will continuously monitor the x-ray sky, and will enable multi-wavelength and multi-messenger studies. The mission is currently in phase B, which will be completed in the middle of 2022.
The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance.
HERMES (high energy rapid modular ensemble of satellites) is a space-borne mission based on a constellation of nano-satellites flying in a low-Earth orbit (LEO). The six 3U CubeSat buses host new miniaturized instruments hosting a hybrid silicon drift detector/GAGG:Ce scintillator photodetector system sensitive to x-rays and gamma-rays. HERMES will probe the temporal emission of bright high-energy transients such as gamma-ray bursts (GRBs), ensuring a fast transient localization (with arcmin-level accuracy) in a field of view of several steradians exploiting the triangulation technique. With a foreseen launch date in late 2023, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. Moreover, the HERMES constellation will operate in conjunction with the space industry responsive intelligent thermal (SpIRIT) 6U CubeSat, to be launched in early 2023. SpIRIT is an Australian-Italian mission for high-energy astrophysics that will carry in a sun-synchronous orbit (SSO) an actively cooled HERMES detector system payload. On behalf of the HERMES collaboration, in this paper we will illustrate the HERMES and SpIRIT payload design, integration and tests, highlighting the technical solutions adopted to allow a wide-energy-band and sensitive x-ray and gamma-ray detector to be accommodated in a 1U CubeSat volume.
The LAD (large area detector) instrument, onboard the Sino-European mission eXTP (enhanced x-ray timing and polarimetry), will perform single-photon, high-resolution timing and energy measurements, in the energy range 2 to 30 keV, with a large collecting area. Its silicon drift detectors need shielding from NIR/Vis/UV light by astrophysical sources and the bright Earth, to avoid performance degradation. Filters made of an Al coated thin polyimide (PI) membrane will guarantee the needed out-of-band rejection while offering high x-ray transparency. They will be placed between the detectors and the capillary plate plate collimators, open to the external environment. The mission is now in phase B2 and a baseline design for the filters was produced. We describe the filter design and modeling activity, and report the characterization performed so far on x-ray transmission, pinhole and defects, thermo-vacuum cycling endurance, and bright Earth optical load shielding properties.
Within Quantum Gravity theories, different models for space-time quantisation predict an energy dependent speed for photons. Although the predicted discrepancies are minuscule, GRB, occurring at cosmological distances, could be used to detect this signature of space-time granularity with a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of high signal-to-noise impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of GW. A pathfinder of GrailQuest is already under development through the HERMES project: a fleet of six 3U cube-sats to be launched by 2021/22.
The association of GW170817 with GRB170817A proved that electromagnetic counterparts of gravitational wave events are the key to deeply understand the physics of NS-NS merges. Upgrades of the existing GW antennas and the construction of new ones will allow to increase sensitivity down to several hundred Mpc vastly increasing the number of possible electromagnetic counterparts. Monitoring of the hard X-ray/soft gamma-ray sky with good localisation capabilities will help to effectively tackle this problem allowing to fully exploit multi-messenger astronomy. However, building a high energy all-sky monitor with large collective area might be particularly challenging due to the need to place the detectors onboard satellites of limited size. Distributed astronomy is a simple and cheap solution to overcome this difficulty. Here we discuss in detail dedicated timing techniques that allow to precisely locate an astronomical event in the sky taking advantage of the spatial distribution of a swarm of detectors orbiting Earth.
In order to ensure the effective detection of X-ray astronomical detectors by blocking ultraviolet, visible and infrared light, adding optical thermal filter in front of the load is an effective method. According to the scientific requirements of eXTP, optical thermal filters with aluminized polyimide (PI) film structure had been designed and tested in this paper, the results of mechanical tests including burst pressure, vibration and acoustic tests, also the transparent properties of optics in UV, Vis and IR lights are presented. The mechanical test results show that the filters for LAD and SFA can’t pass the acoustic tests, causing the thickness of PI should be increased or a nickel mesh structure should be added. Furthermore, the transmission test results indicate that a single-sided Al deposited structure is more suitable than a double-sided one.
The HERMES-TP/SP mission, based on a nanosatellite constellation, has very stringent constraints of sensitivity and compactness, and requires an innovative wide energy range instrument. The instrument technology is based on the “siswich” concept, in which custom-designed, low-noise Silicon Drift Detectors are used to simultaneously detect soft X-rays and to readout the optical light produced by the interaction of higher energy photons in GAGG:Ce scintillators. To preserve the inherent excellent spectroscopic performances of SDDs, advanced readout electronics is necessary. In this paper, the HERMES detector architecture concept will be described in detail, as well as the specifically developed front-end ASICs (LYRA-FE and LYRA-BE) and integration solutions. The experimental performance of the integrated system composed by scintillator+SDD+LYRA ASIC will be discussed, demonstrating that the requirements of a wide energy range sensitivity, from 2 keV up to 2 MeV, are met in a compact instrument.
HERMES-TP/SP is a constellation of six 3U nano-satellites hosting simple but innovative X-ray detectors for the monitoring of Cosmic High Energy transients such as Gamma Ray Bursts and the electromagnetic counterparts of Gravitational Wave Events, and for the determination of their position. The projects are funded by the Italian Space Agency and by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 821896. HERMES-TP/SP is an in orbit demonstration, that should be tested in orbit by the beginning of 2022. It is intrinsically a modular experiment that can be naturally expanded to provide a global, sensitive all sky monitor for high energy transients. On behalf of the HERMES-TP and HERMES-SP collaborations I will present the main scientific goals of HERMES-TP/SP, as well as a progress report on the payload, service module and ground segment developments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.