Large-format infrared detectors are at the heart of major ground and space-based astronomical instruments, and the HgCdTe HxRG is the most widely used. The Near Infrared Spectrometer and Photometer (NISP) of the ESA’s Euclid mission launched in July 2023 hosts 16 H2RG detectors in the focal plane. Their performance relies heavily on the effect of image persistence, which results in residual images that can remain in the detector for a long time contaminating any subsequent observations. Deriving a precise model of image persistence is challenging due to the sensitivity of this effect to observation history going back hours or even days. Nevertheless, persistence removal is a critical part of image processing because it limits the accuracy of the derived cosmological parameters. We will present the empirical model of image persistence derived from ground characterization data, adapted to the Euclid observation sequence and compared with the data obtained during the in-orbit calibrations of the satellite.
Euclid, the M2 mission of the ESA’s Cosmic Vision 2015-2025 program, aims to explore the Dark Universe by conducting a survey of approximately 14 000 deg2 and creating a 3D map of the observable Universe of around 1.5 billion galaxies up to redshift z ∼ 2. This mission uses two main cosmological probes: weak gravitational lensing and galaxy clustering, leveraging the high-resolution imaging capabilities of the Visual Imaging (VIS) instrument and the photometric and spectroscopic measurements of the Near Infrared Spectrometer and Photometer (NISP) instrument. This paper details some of the activities performed during the commissioning phase of the NISP instrument, following the launch of Euclid on July 1, 2023. In particular, we focus on the calibration of the NISP detectors’ baseline and on the performance of a parameter provided by the onboard data processing (called NISP Quality Factor, QF) in detecting the variability of the flux of cosmic rays hitting the NISP detectors. The NISP focal plane hosts sixteen Teledyne HAWAII-2RG (H2RG) detectors. The calibration of these detectors includes the baseline optimization, which optimizes the dynamic range and stability of the signal acquisition. Additionally, this paper investigates the impact of Solar proton flux on the NISP QF, particularly during periods of high Solar activity. Applying a selection criterion on the QF (called NISP QF Proxy), the excess counts are used to monitor the amount of charged particles hitting the NISP detectors. A good correlation was found between the Solar proton flux component above 30 MeV and the NISP QF Proxy, revealing that NISP detectors are not subject to the lower energy components, which are absorbed by the shielding provided by the spacecraft.
The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments (see ref [1]). It operates in the near-IR spectral region (950-2020nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly, a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection system based on a mosaic of 16 H2RG with their front-end readout electronic. - a warm electronic system (290K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This paper presents: - the final architecture of the flight model instrument and subsystems - the performances and the ground calibration measurement done at NISP level and at Euclid Payload Module level at operational cold temperature.
ESA’s mission Euclid while undertaking its final integration stage is fully qualified. Euclid will perform an extra galactic survey (0<z<2) using visible and near-infrared light. To detect the infrared radiation is equipped with the Near Infrared Spectro-Photometer (NISP) instrument with a sensitivity in the 0.9-2 μm range. We present an illustration of the NISP Data Processing Unit’s Application Software, highlighting the experimental process to obtain the final parametrization of the on-board processing of data produced by an array of 16 Teledyne’s HAWAII-2RG (HgCdTe) - each of 2048×2048 px2, 0.3 arcsec/px, 18 μm pixel pitch; using data from the latest test campaigns done with the flight configuration hardware - complete optical system (Korsh anastigmat telescope), detectors array (0.56 deg2 firld of view) and readout systems (16 Digital Control Units and Sidecar ASICs). Also, we show the outstanding Spectrometric (using a Blue and two Red Grisms) and Photometric (using YE 0.92-1.15μm, JE 1.15-1.37μm, and HE 1.37-2.0 μm filters) performances of the NISP detector derived from the end-to-end payload module test campaign at FOCAL 5 - CSL; among them the Photometric Point Spread Function (PSF) determination, and the Spectroscopic dispersion verification. Also the performances of the onboard processing are presented. Then, we describe the solution of a major issue found during this final test phase that put NISP in the critical path. We will describe how the problem was eventually understood and solved thanks to an intensive coordinated effort of an independent review team (tiger team lead by ESA) and a team of NISP experts from the Euclid Consortium. An extended PLM level campaign in ambient in Liege and a dedicated test campaign conducted in Marseille on the NISP EQM model, with both industrial and managerial support, finally confirmed the correctness of the diagnosis of the problem. Finally, the Euclid’s survey is presented (14000 deg2 wide survey, and ∼40 deg2 deep-survey) as well as the global statistics for a mission lifetime of 6 years (∼1.5 billion Galaxy’s shapes, and ∼50 million Galaxy’s spectra).
KEYWORDS: Sensors, Data processing, Space operations, Data acquisition, Signal detection, Electronics, Control systems, Interfaces, Software development
In this paper we describe the application software (ASW) of the instrument control unit (ICU) of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software is based on a real-time operating system (RTEMS) and will interface with all the subunits of NISP, as well as the command and data management unit (CDMU) of the spacecraft for telecommand and housekeeping management.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.