NASA / MSFC has made new full-shell NiCo replicated hard X-ray optics
for the fourth flight of the Focusing Optics X-ray Solar Imager
sounding rocket set to observe the sun in March 2023. The new FOXSI-4
high resolution optics were made using enhanced
mandrel polishing techniques incorporating a Zeeko CNC deterministic
polishing machine and an improved module assembly station with in-situ metrology.
FOXSI-4 will fly three new 2-meter focal length high
resolution mirror modules with two shells each. The previous FOXSI-3
optics achieved an angular resolution of 20 arcsec HPD (5 arcsec FWHM) for
ten-shell modules. Initial X-ray measurements of FOXSI-4 shells
before module integration show a performance of 8 arcsec HPD and 3
arcsec FWHM, a substantial improvement over the FOXSI-3 optics. We present the
advances made in the polishing, replication, and assembly processes, and
measurements of the performance of the completed modules taken in the
Marshall 100 meter X-ray beam line.
Evaluating Wolter-like x-ray mirror prescriptions via ray tracing is useful for selecting and optimizing the right mirror prescriptions for a specified application. Moreover, incorporating real metrology data into a ray trace and simulating Point Spread Functions (PSF) allow for performance predictions representative of real manufacturing errors and tolerances. In fulfillment of an internship project, an x-ray ray trace routine using a Monte-Carlo method has been developed to examine different Wolter-like prescriptions and characterize their theoretical performances over a specified field of view. This routine includes the ability to use real metrology data to evaluate the impact of figure error on imaging performance. As a test case, the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Wolter-I mirror prescription and an equivalent Wolter-Schwarzschild prescriptions were traced and imaging performance of a specified field of view were mapped. Here we present the approach used in this routine, showcase example results, and discuss future goals for expanding the routine to address azimuthally varying figure errors and surface roughness.
The Marshall 100-Meter x-ray Beamline is a user facility for x-ray and EUV optics and instrumentation calibration, located at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Also known as the Stray Light Test Facility, the Marshall-100 provides a range of focal plane detectors, x-ray sources, translation stages, cleanrooms, and high-vacuum level capability to the high-energy astrophysics community. Facility time is made available to Astronomy and Physics Research and Analysis (APRA) funded projects and is also available to the broader community upon request made to beamline management. The beamline has successfully been employed in the calibration of larger scope projects such as the Spectrum-Roentgen-Gamma Astronomical Röentgen Telescope X-ray Concentrator (ART-XC) telescope and the Small Explorer (SMEX) class Imaging X-ray Polarimetry Explorer (IXPE) Space Telescope. Additionally, the Marshall-100 is instrumental in supporting testing related to MSFC’s high-angular resolution optics development program.
Technology for a large-area, high-angular resolution mirror module for a future Great Observatory x-ray mission is progressing along different paths. To date, none of these are fully developed. Work at the Marshall Space Flight Center (MSFC) seeks to leverage the benefits of full shell optics while exploring the limits of using shell replication technology for optics production. Here, we provide an updated accounting of spatial-resolution-constraining error terms to give context to recent improvements in MSFC replicated optics, as well as guidance and justification for current and future directions of research and development. Content includes straw-man error allocations for an optical system that is parametrically Lynx-like, where the replicated-optics technology stands relative to these allocations, and methodology for mapping development plans to efficiently identify the limiting factors, and approaches to overcoming these.
Slitless spectrometers can provide both spatial and spectral information of extended objects, such as the Sun, in a single snapshot. The data, however, require unfolding of overlapping spatial and spectral information. Thanks to advances in computer processing speeds, there have been several techniques developed to complete the spatial/spectral unfolding, unlocking the full capability of slitless spectrometers for solar observations. The goal of this talk is to give an overview of the capability of such instruments and demonstrate their usefulness in the next decade of solar observatories and beyond.
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a sounding rocket mission that completed a successful flight from the White Sands Missile Range on July 30, 2021. MaGIXS captured spatially resolved soft X-ray spectra from portions of two solar active regions during its roughly 5-minute flight. The instrument was originally designed as a grazing incidence slit spectrograph but flew in a slit-less configuration that produced overlapping spectroheliograms. For the second flight, MaGIXS-2, the instrument has been reconfigured to a more simplified optical layout that reuses the Wolter-I telescope and blazed varied-line space reflective grating. The field stop at the telescope focal plane and the finite conjugate spectrometer mirror pair have been removed – the telescope now directly feeds the grating. Additionally, an identical but new 2k x 1k CCD camera has been built for this flight. The MaGIXS-2 data product will again be overlapping spectroheliograms of at least one solar active region, but with improved resolution, a larger field of view and increased effective area. Here we present the updated instrument layout, the expected performance, the integration and calibration approach, and proposed future improvements, including the implementation of additional complimentary spectral diagnostics.
The first three flights of the Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket established the usefulness and feasibility of direct-focusing hard X-ray instruments optimized for the Sun. While the fundamental building blocks of this concept are ready for a spacecraft mission, concurrent development is required to prepare for a subsequent generation of high-energy solar explorers, which will require higher rates and even better angular resolution. The fourth flight of FOXSI features technological advances for high resolution and high rate capability. We are developing high-precision mirror production methods, substrip/subpixel resolution in fine-pitch CdTe sensors, and novel pixelated attenuators (that optimize energy coverage even at high rates). These technologies will be demonstrated in NASA’s first-ever solar flare campaign in March 2024. Multiple payloads will be launched during a solar flare, supporting Parker Solar Probe observations during one of its perihelia.
The Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) mission is an astrophysics Small Explorer employing ultraviolet spectroscopy (EUV: 80 to 825 Å and FUV: 1280 to 1650 Å) to explore the high-energy radiation environment in the habitable zones around nearby stars. ESCAPE provides the first comprehensive study of the stellar EUV and coronal mass ejection environments that directly impact the habitability of rocky exoplanets. In a 20-month science mission, ESCAPE will provide the essential stellar characterization to identify exoplanetary systems most conducive to habitability and provide a roadmap for NASA’s future life-finder missions. ESCAPE accomplishes this goal with roughly two-order-of-magnitude gains in EUV efficiency over previous missions. ESCAPE employs a grazing incidence telescope that feeds an EUV and FUV spectrograph. The ESCAPE science instrument builds on previous ultraviolet and x-ray instrumentation, grazing incidence optical systems, and photon-counting ultraviolet detectors used on NASA astrophysics, heliophysics, and planetary science missions. The ESCAPE spacecraft bus is the versatile and high-heritage Ball Aerospace BCP-Small spacecraft. Data archives will be housed at the Mikulski Archive for Space Telescopes.
The Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) mission is an astrophysics Small Explorer employing ultraviolet spectroscopy (EUV: 80 - 825 Å and FUV: 1280 - 1650 Å) to explore the high-energy radiation environment in the habitable zones around nearby stars. ESCAPE provides the first comprehensive study of the stellar EUV and coronal mass ejection environments which directly impact the habitability of rocky exoplanets. In a 20 month science mission, ESCAPE will provide the essential stellar characterization to identify exoplanetary systems most conducive to habitability and provide a roadmap for NASA's future life-finder missions. ESCAPE accomplishes this goal with roughly two-order-of-magnitude gains in EUV efficiency over previous missions. ESCAPE employs a grazing incidence telescope that feeds an EUV and FUV spectrograph. The ESCAPE science instrument builds on previous ultraviolet and X-ray instrumentation, grazing incidence optical systems, and photon-counting ultraviolet detectors used on NASA astrophysics, heliophysics, and planetary science missions. The ESCAPE spacecraft bus is the versatile and high-heritage Ball Aerospace BCP-Small spacecraft. Data archives will be housed at the Mikulski Archive for Space Telescopes (MAST). ESCAPE is currently completing a NASA Phase A study, and if selected for Phase B development would launch in 2025.
The University of Colorado led Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) small explorer mission concept is designed to measure the extreme- and far-ultraviolet (EUV; 80 - 560 A, 600 - 825 A, FUV; 1280 - 1650 A) irradiance and are activity of exoplanet host stars; essential measurements for assessing the stability of rocky planet atmospheres in the liquid-water habitable zone. The ESCAPE design consists of a fixed optical configuration with a grazing incidence Gregorian, or "Hetterick- Bowyer", telescope feeding grazing and normal incidence spectroscopic channels. The telescope is provided by a joint NASA Marshall Space Flight Center and Smithsonian Astrophysics Observatory team. The grazing incidence gratings have a radial profile and are ruled into single-crystal silicon using electron-beam lithography in the nanofabrication laboratory at Pennsylvania State University. Normal incidence gratings have aberration correcting holographic solutions and are supplied by Horiba Jobin Yvon. Spectra are imaged onto a curved microchannel plate detector supplied by the University of California, Berkeley. ESCAPE utilizes the Ball Aerospace BCP spacecraft. The simple, fixed configuration design of ESCAPE is projected to exceed the effective area of the last major EUV astrophysics spectrograph, EUV E-DS/S, by more than a factor of 50, providing unprecedented sensitivity in this essential bandpass for exoplanet host-star characterization. We report on the ESCAPE design, projected performance and mission implementation plan, as well as the trade studies carried out over Phase A to scope the first NASA EUV astrophysics mission in nearly 30 years. If selected, ESCAPE will launch in Fall 2025.
The FOXSI-4 sounding rocket will fly a significantly upgraded instrument in NASA's first solar are campaign. It will deploy direct X-ray focusing optics which have revolutionized our understanding of astrophysical phenomena. For example, they have allowed NuSTAR to provide X-ray imaging and IXPE (scheduled for launch in 2021) to provide X-ray polarization observations with detectors with higher photon rate capability and greater sensitivity than their predecessors. The FOXSI sounding rocket is the first solar dedicated mission using this method and has demonstrated high sensitivity and improved imaging dynamic range with its three successful flights. Although the building blocks are already in place for a FOXSI satellite instrument, further advances are needed to equip the next generation of solar X-ray explorers. FOXSI-4 will develop and implement higher angular resolution optics/detector pairs to investigate fine spatial structures (both bright and faint) in a solar are. FOXSI-4 will use highly polished electroformed Wolter-I mirrors fabricated at the NASA/Marshall Space Flight Center (MSFC), together with finely pixelated Si CMOS sensors and fine-pitch CdTe strip detectors provided by a collaboration with institutes in Japan. FOXSI-4 will also implement a set of novel perforated attenuators that will enable both the low and high energy spectral components to be observed simultaneously in each pixel, even at the high rates expected from a medium (or large) size solar are. The campaign will take place during one of the Parker Solar Probe (PSP) perihelia, allowing coordination between this spacecraft and other instruments which observe the Sun at different wavelengths.
The Marshall 100-Meter X-ray Beamline is a world class facility utilized for testing X-ray and EUV optics and instrumentation. Also known as the Stray Light Test Facility, the beamline has been consequential in the calibration of flight missions such as ART-XC and IXPE. Additionally, the beamline is effectively used for APRA-funded projects and in MSFC own internal optic development campaigns. The Marshall 100-Meter X-ray Beamline a flexible and affordable facility that easily accommodates many of the astrophysical community’s needs. With its recent and upcoming improvements, the Marshall 100-Meter X-ray Beamline will continue to be a user-friendly calibration resource for decades to come.
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed and built to observe X-ray emissions from the Sun’s atmosphere in the 6–24Å (0.5–2.0keV) range while achieving high spectral and spatial resolution along a 8-arcminute long slit. We describe the alignment process and discuss the results achieved for assembling the Telescope Mirror Assembly (TMA) and the Spectrometer Optics Assembly (SOA) prior to final integration into the MaGIXS instrument. The MaGIXS mirrors are full shell, electroformed nickel replicated on highly polished mandrels at the Marshall Space Flight Center (MSFC). The TMA carries a single shell, Wolter Type-1 mirror pair (primary and secondary) formed on a common mandrel. The SOA includes a matched pair of identical parabolic mirrors and a planar varied-line spacing (VLS) diffraction grating. We performed the subassembly alignment and mounting at the Smithsonian Astrophysical Observatory (SAO) using metrology and precision positioning systems constructed around the Centroid Detector Assembly (CDA), originally built for the alignment of the Chandra mirror shells. The MaGIXS instrument launch has been postponed until 2021 due to the COVID-19 pandemic.
In an effort to manufacture high-angular-resolution, grazing-incidence, x-ray optics, Marshall Space Flight Center (MSFC) is taking measures to improve its electroformed replicated optics. A key development is the use of computer-numerical control (CNC) polishing to deterministically improve the surface of electroless nickel mandrels used to replicate grazing-incidence optics. Metrology, control software and polishing parameters must function together seamlessly to reach the specifications required to replicate sub-arcsecond optics. Each change in polishing parameters effects the wear pattern of the polishing head. Using Richardson-Lucy deconvolution, the controller software fits the wear pattern to metrology data to calculate the changing feedrates across the mandrel. Here we present an overview of our process, and early results showing the effectiveness of deterministic polishing for replicated optics.
Recently NASA Marshall Space Flight Center has made good progress in employing computer numerical control (CNC) polishing techniques on electroless nickel mandrels, as part of our replicated grazing incidence optics program. CNC polishing has afforded the ability to deterministically refine mandrel figure, therefore improving mirror performance. The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a MSFC-led sounding rocket instrument that comprises some of the first mirrors produced at MSFC using this polishing technique. Here we present the predicted mirror performance obtained from metrology, after completion of CNC polishing, as well as the results of X-ray tests performed on the MaGIXS telescope mirror before, and after mounting.
NASA’s Marshall Space Flight Center (MSFC) maintains an active research program toward the development of high-resolution, lightweight, grazing-incidence x-ray optics to serve the needs of future x-ray astronomy missions such as Lynx. MSFC development efforts include both direct fabrication (diamond turning and deterministic computer-controlled polishing) of mirror shells and replication of mirror shells (from figured, polished mandrels). Both techniques produce full-circumference monolithic (primary + secondary) shells that share the advantages of inherent stability, ease of assembly, and low production cost. However, to achieve high-angular resolution, MSFC is exploring significant technology advances needed to control sources of figure error including fabrication- and coating-induced stresses and mounting-induced distortions.
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to obtain spatially resolved soft X-ray spectra of the solar atmosphere in the 6–24 Å (0.5–2.0 keV) range. The instrument consists of a single shell Wolter Type-I telescope, a slit, and a spectrometer comprising a matched pair of grazing incidence parabolic mirrors and a planar varied-line space diffraction grating. The instrument is designed to achieve a 50 mÅ spectral resolution and 5 arcsecond spatial resolution along a ±4-arcminute long slit, and launch is planned for 2019. We report on the status and our approaches for fabrication and alignment for this novel optical system. The telescope and spectrometer mirrors are replicated nickel shells, and are currently being fabricated at the NASA Marshall Space Flight Center. The diffraction grating is currently under development by the Massachusetts Institute of Technology (MIT); because of the strong line spacing variation across the grating, it will be fabricated through e-beam lithography.
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to obtain spatially resolved soft X-ray spectra of the solar atmosphere in the 6–24 Å (0.5–2.0 keV) range. The instrument consists of a single shell Wolter Type-I telescope, a slit, and a spectrometer comprising a matched pair of grazing incidence parabolic mirrors and a planar varied-line space diffraction grating. The instrument is designed to achieve a 50 mÅ spectral resolution and 5 arcsecond spatial resolution along a ±4-arcminute long slit, and launch is planned for 2019. We report on the status and our approaches for fabrication and alignment for this novel optical system. The telescope and spectrometer mirrors are replicated nickel shells, and are currently being fabricated at the NASA Marshall Space Flight Center. The diffraction grating is currently under development by the Massachusetts Institute of Technology (MIT); because of the strong line spacing variation across the grating, it will be fabricated through e-beam lithography.
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument that is designed to observe soft X-ray emissions from 24 - 6.0 Å (0.5 - 2.0 keV energies) in the solar atmosphere. For the first time, high-temperature, low-emission plasma will be observed directly with 5 arcsecond spatial resolution and 22 mÅ spectral resolution. The unique optical design consists of a Wolter - I telescope and a 3-optic grazing- incidence spectrometer. The spectrometer utilizes a finite conjugate mirror pair and a blazed planar, varied line spaced grating, which is directly printed on a silicon substrate using e-beam lithography. The grating design is being finalized and the grating will be fabricated by the Massachusetts Institute of Technology (MIT) and Izentis LLC. Marshall Space Flight Center (MSFC) is producing the nickel replicated telescope and spectrometer mirrors using the same facilities and techniques as those developed for the ART-XC and FOXSI mirrors. The Smithsonian Astrophysical Observatory (SAO) will mount and align the optical sub-assemblies based on previous experience with similar instruments, such as the Hinode X-Ray Telescope (XRT). The telescope and spectrometer assembly will be aligned in visible light through the implementation of a theodolite and reference mirrors, in addition to the centroid detector assembly (CDA) - a device designed to align the AXAF-I nested mirrors. Focusing of the telescope and spectrometer will be achieved using the X-ray source in the Stray Light Facility (SLF) at MSFC. We present results from an alignment sensitivity analysis performed on the on the system and we also discuss the method for aligning and focusing MaGIXS.
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (≤ 25 e− read noise and ≤ 10 e− /sec/pixel dark current), in addition to maintaining a stable gain of ≈ 2.0 e−/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Three flight cameras and one engineering camera were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise and dark current of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV, EUV and X-ray science cameras at MSFC.
The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-α and to detect the Hanle effect in the line core. Due to the nature of Lyman-α polarizationin the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. The CLASP cameras were designed to operate with ≤ 10 e-/pixel/second dark current, ≤ 25 e- read noise, a gain of 2.0 +- 0.5 and ≤ 1.0% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.