Mueller microscopy studies of fixed unstained histological cuts of human skin models were combined with an analysis of experimental data within the framework of differential Mueller matrix (MM) formalism. A custom-built Mueller polarimetric microscope was used in transmission configuration for the optical measurements of skin tissue model adjacent cuts of various nominal thicknesses (5 to 30 μm). The maps of both depolarization and polarization parameters were calculated from the corresponding microscopic MM images by applying a logarithmic Mueller matrix decomposition (LMMD) pixelwise. The parameters derived from LMMD of measured tissue cuts and the intensity of transmitted light were used for an automated segmentation of microscopy images to delineate dermal and epidermal layers. The quadratic dependence of depolarization parameters and linear dependence of polarization parameters on thickness, as predicted by the theory, was confirmed in our measurements. These findings pave the way toward digital histology with polarized light by presenting the combination of optimal optical markers, which allows mitigating the impact of tissue cut thickness fluctuations and increases the contrast of polarimetric images for tissue diagnostics.
In the second part of this work, the method is experimentally highlighted by studying a rabbit leg ex-vivo sample. The obtained images of the ex-vivo sample illustrate how IPPs provide a significant enhancement in the image contrast of some biological tissues and, in some cases, present new information hidden in the usual polarimetric channels. Moreover, new physical interpretation of the sample can be derived from the IPPs which allow us to synthesize the depolarization behavior.
Finally, we also propose a pseudo-colored encoding of the IPPs information that provides an improved visualization of the samples. This last technique opens the possibility to highlight a specific tissue structure by properly adjusting the pseudo-colored formula.
View contact details