Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to survey the atmospheres of known exoplanets through transit spectroscopy. The launch is scheduled for 2029. The scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband 0.5-7.8 µm and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully aluminium design to tolerate thermal variations to avoid impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m (the major axis), followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure hinges supports the primary mirror on one of the optical bench sides. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Critical Design Review; the fabrication of the structural and engineering models has started; some components, i.e., the primary mirror and its mounting system are undergoing further qualification activities. This paper aims to update the scientific community on the progress concerning the development, manufacturing and qualification activity of the ARIEL Telescope Assembly.
Ariel [1] is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. The operational orbit of the spacecraft is baselined as a large amplitude halo orbit around the Sun-Earth L2 Lagrangian point, as it offers the possibility of long uninterrupted observations in a fairly stable radiative and thermo-mechanical environment. A direct escape injection with a single passage through the Earth radiation belts and no eclipses is foreseen. The space environment around Earth and L2 presents significant design challenges to all spacecraft, including the effects of interactions with Sun radiation and charged particles owning to the surrounding plasma environment, potentially leading to dielectrics charging and unwanted electrostatic discharge (ESD) phenomena endangering the Payload operations and its data integrity. Here, we present some preliminary simulations and analyses about the Ariel Payload dielectrics and semiconductors charging along the transfer orbit from launch to L2 included.
KEYWORDS: Field programmable gate arrays, Electronics, Data processing, Power supplies, Image processing, Infrared imaging, Space telescopes, Exoplanets, Infrared spectroscopy, Photometry
ARIEL is an ESA mission whose scientific goal is to investigate exoplanetary atmospheres. The payload is composed by two instruments: AIRS (ARIEL IR Spectrometer) and FGS (Fine Guidance System). The FGS detection chain is composed by two HgCdTe detectors and by the cold Front End Electronics (SIDECAR), kept at cryogenic temperatures, interfacing with the F-DCU (FGS Detector Control Unit) boards that we will describe thoroughly in this paper. The F-DCU are situated in the warm side of the payload in a box called FCU (FGS Control Unit) and contribute to the FGS VIS/NIR imaging and NIR spectroscopy. The F-DCU performs several tasks: drives the detectors, processes science data and housekeeping telemetries, manages the commands exchange between the FGS/DPU (Data Processing Unit) and the SIDECARs and provides high quality voltages to the detectors. This paper reports the F-DCU status, describing its architecture, the operation and the activities, past and future necessary for its development.
Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) is the adopted M4 mission in the framework of the ESA “Cosmic Vision” program. Its purpose is to conduct a survey of the atmospheres of known exoplanets through transit spectroscopy. Launch is scheduled for 2029. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope feeding a set of photometers and spectrometers in the waveband between 0.5 and 7.8 µm and operating at cryogenic temperatures (55 K). The Telescope Assembly is based on an innovative fully-aluminum design to tolerate thermal variations avoiding impacts on the optical performance; it consists of a primary parabolic mirror with an elliptical aperture of 1.1 m of major axis, followed by a hyperbolic secondary that is mounted on a refocusing system, a parabolic re-collimating tertiary and a flat folding mirror directing the output beam parallel to the optical bench. An innovative mounting system based on 3 flexure-hinges supports the primary mirror on one side of the optical bench. The instrument bay on the other side of the optical bench houses the Ariel IR Spectrometer (AIRS) and the Fine Guidance System / NIR Spectrometer (FGS/NIRSpec). The Telescope Assembly is in phase B2 towards the Preliminary Design Review to start the fabrication of the structural model; some components, i.e., the primary mirror, its mounting system and the refocusing mechanism, are undergoing further development activities to increase their readiness level. This paper describes the design and development of the ARIEL Telescope Assembly.
ARIEL (Atmospheric Remote-sensing InfraRed Large-survey) is a medium-class mission of the European Space Agency, part of the Cosmic Vision program, whose launch is foreseen by early 2029. ARIEL aims to study the composition of exoplanet atmospheres, their formation and evolution. The ARIEL’s target will be a sample of about 1000 planets observed with one or more of the following methods: transit, eclipse and phase-curve spectroscopy, at both visible and infrared wavelengths simultaneously. The scientific payload is composed by a reflective telescope having a 1m-class elliptical primary mirror, built in solid Aluminium, and two focal-plane instruments: FGS and AIRS. FGS (Fine Guidance System)1 has the double purpose, as suggested by its name, of performing photometry (0.50-0.55 μm) and low resolution spectrometry over three bands (from 0.8 to 1.95 µm) and, simultaneously, to provide data to the spacecraft AOCS (Attitude and Orbit Control System) with a cadence of 10 Hz and contributing to reach a 0.02 arcsec pointing accuracy for bright targets. AIRS (ARIEL InfraRed Spectrometer) instrument will perform IR spectrometry in two wavelength ranges: between 1.95 and 3.9 μm (with a spectral resolution R < 100) and between 3.9 and 7.8 μm with a spectral resolution R < 30. This paper provides the status of the ICU (Instrument Control Unit), an electronic box whose purpose is to command and supply power to AIRS (as well as acquire science data from its two channels) and to command and control the TCU (Telescope Control Unit).
The primary mirror of the Ariel space telescope (an ESA M class mission aimed at the study of exoplanets, scheduled for launch in 2029) is an elliptical off-axis paraboloid. Like the entire telescope, it is built of aluminum. As a massive part of the payload, as well as one of the most delicate components of the telescope, this mirror has to be accurately designed, in order to minimize its mass while not degrading its optical performances. This paper discusses the optimization study of the primary mirror of Ariel. Starting from its optical and geometrical specifications, we have run an iterative process based on FEA dynamic analyses, in order to compute the first ”free-free” eigenfrequencies while varying the three fundamental parameters of the honeycomb structure of the mirror - the thickness of the ribs, the outer edge, and the reflecting surface. Later, the optimization routine has been improved by adding the honeycomb geometry as a variable parameter. As a result, the best configurations is identified as the ones giving the higher ratios of the first relevant eigenfrequency divided by the mass.
Ariel (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is an ESA M class mission aimed at the study of exoplanets. The satellite will orbit in the lagrangian point L2 and will survey a sample of 1000 exoplanets simultaneously in visible and infrared wavelengths. The challenging scientific goal of Ariel implies unprecedented engineering efforts to satisfy the severe requirements coming from the science in terms of accuracy. The most important specification – an all-Aluminum telescope – requires very accurate design of the primary mirror (M1), a novel, off-set paraboloid honeycomb mirror with ribs, edge, and reflective surface. To validate such a mirror, some tests were carried out on a prototype – namely Pathfinder Telescope Mirror (PTM) – built specifically for this purpose. These tests, carried out at the Centre Spatial de Liège in Belgium – revealed an unexpected deformation of the reflecting surface exceeding a peek-to-valley of 1µm. Consequently, the test had to be re-run, to identify systematic errors and correct the setting for future tests on the final prototype M1. To avoid the very expensive procedure of developing a new prototype and testing it both at room and cryogenic temperatures, it was decided to carry out some numerical simulations. These analyses allowed first to recognize and understand the reasoning behind the faults occurred during the testing phase, and later to apply the obtained knowledge to a new M1 design to set a defined guideline for future testing campaigns.
ARIEL, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission1-3 was selected in early 2018 by the European Space Agency (ESA) as the fourth medium-class mission (M4) launch opportunity of the Cosmic Vision Program, with an expected launch in late 2028. It is the first mission dedicated to the analysis of the chemical composition and thermal structures of up to a thousand transiting exoplanets atmospheres, which will expand planetary science far beyond the limits of our current knowledge.
The Osservatorio Polifunzionale del Chianti is a new astronomical site located in the neighbourhoods of San Donato in Poggio (Firenze), on top of one of the highest hills of the Chianti area, among the darkest places in Tuscany, and it is managed by the University of Florence. The name takes origin from the different observatories that are hosted in the building. Beside the Astronomical Observatory, Geo-seismic, Meteorological and Environmental Observatories fully operate in a fruitful synergic collaboration among themselves.
Presently, the main research activity at OPC concerns the observation and follow-up of transiting exoplanets while the team is involved in national and international collaborations, like TESS SG1 follow-up for the observation of exoplanet candidates and GAPS, which exploits several telescopes and facilities in Italy (Asiago, OAVdA) and Canary Islands (HARPS-North and GIANO instruments as well as their improved combined version) for exoplanetary characterization.
OPC researchers perform their activity in the framework of collaborations with Osservatorio Astrofisico di Torino and Osservatorio Autonomo della Val d'Aosta. From July 2017, to date, commissioning observing runs have been done in order to test the telescope and mount capabilities, systematics and limits and to eventually improve the accuracy of the overall system. A software algorithm has been developed1 in order to estimate the accuracy of any transit observation, so that parameters like the integration time and telescope focus can be chosen to obtain a higher signal to noise ratio, and also to understand the observational limits of the instruments. Currently, the system is able to work within±1 mmag of accuracy and differential photometry error (refer to the error bars in Figure 6) so that exoplanet transits with (see abstract for symbol _5 mmag) of relative depth can be observed fruitfully.
The OPC Research Team also aims at the observation of the optical/visible counterpart of gamma ray bursts afterglows, supernovae and GW ToO (Gravitational Waves events / Targets of Opportunity) follow-up along with transiting exoplanets follow-up. The reason is twofold. First of all, the scientific interest on these events of the researchers supporting OPC, and then the demand of the astronomical community for follow-up observations with small telescopes, around the 1-m class, since larger telescopes are often used for primary targets observations. To pursue the target of observing GRBs and the optical counterpart of GW events, it is planned to improve the main instrument accuracy and to develop a consolidated observation procedure, to be ready for the next LIGO-VIRGO O3 run scheduled for the Autumn, 2018.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.