In this paper we present the European Low Frequency Survey (ELFS), a project that will enable foregrounds-free measurements of the primordial B-mode polarization and a detection of the tensor-to-scalar ratio, r, to a level σ(r) = 0:001 by measuring the Galactic and extra-galactic emissions in the 5–120 GHz frequency window. Indeed, the main difficulty in measuring the B-mode polarization comes from the fact that many other processes in the Universe also emit polarized microwaves, which obscure the faint Cosmic Microwave Background (CMB) signal. The first stage of this project is being carried out in synergy with the Simons Array (SA) collaboration, installing a 5.5–11GHz (X-band) coherent receiver at the focus of one of the three 3.5m SA telescopes in Atacama, Chile, followed by the installation of the QUIJOTE-MFI2 in the 10–20 GHz range. We designate this initial iteration of the ELFS program as ELFS-SA. The receivers are equipped with a fully digital back-end that will provide a frequency resolution of 1MHz across the band, allowing us to clean the scientific signal from unwanted radio frequency interference, particularly from low-Earth orbit satellite mega constellations. This paper reviews the scientific motivation for ELFS and its instrumental characteristics, and provides an update on the development of ELFS-SA.
Publisher's Note: This paper, originally published on, 9 July 2018, was replaced with a corrected/revised version on,12 September 2023. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
We present the conceptual design of the modular detector and readout system for the Cosmic Microwave Background – Stage four (CMB-S4) ground-based survey experiment. CMB-S4 will map the cosmic microwave background (CMB) and the millimeter-wave sky to unprecedented sensitivity, using 500,000 superconducting detectors observing from Chile and Antarctica to map over 60% of the sky. The fundamental building block of the detector and readout system is a detector module package operated at 100 mK, which is connected to a readout and amplification chain that carries signals out to room temperature. It uses arrays of feedhorn-coupled orthomode transducers (OMT) that collect optical power from the sky onto dc-voltage-biased transition-edge sensor (TES) bolometers. The resulting current signal in the TESs is then amplified by a two-stage cryogenic Superconducting Quantum Interference Device (SQUID) system with a time-division multiplexer to reduce wire count, and matching room-temperature electronics to condition and transmit signals to the data acquisition system. Sensitivity and systematics requirements are being developed for the detector and readout system over wide range of observing bands (20 to 300 GHz) and optical powers to accomplish CMB-S4’s science goals. While the design incorporates the successes of previous generations of CMB instruments, CMB-S4 requires an order of magnitude more detectors than any prior experiment. This requires fabrication of complex superconducting circuits on over 10 m2 of silicon, as well as significant amounts of precision wiring, assembly and cryogenic testing
The Simons Array is an experiment located in the Atacama Desert in Chile that will measure the polarization anisotropy of the Cosmic Microwave Background. It consists of three telescopes that house the receivers POLARBEAR-2A, POLARBEAR-2B and POLARBEAR-2C, which will observe the CMB at 90, 150, 220 and 270 GHz with over 22,000 Transition Edge Sensor (TES) bolometers. Each receiver contains a focal plane composed of seven hexagonal arrays of lenslet-coupled sinuous antenna bolometers, with each dichroic pixel containing four TESs. The readout system uses Superconducting Quantum Interference Devices for signal amplification and digital frequency-domain multiplexing with a multiplexing factor of 40. The sensitivity of the Simons Array instruments is governed by the detectors’ noise level and the telescope optical throughput, thus an on-site signal to noise characterization is essential to evaluate the instrument. We present the post-deployment measured readout noise and methods used to improve the noise performance of POLARBEAR-2A detectors, which measure radiation in the 90 and 150 GHz bands.
CMB-S4 will map the cosmic microwave background to unprecedented precision, while simultaneously surveying the millimeter-wave time-domain sky, in order to advance our understanding of cosmology and the universe. CMB-S4 will observe from two sites, the South Pole and the Atacama Desert of Chile. A combination of small- and large-aperture telescopes with hundreds of thousands of polarization-sensitive detectors will observe in several frequency bands from 20–300 GHz, surveying more than 50% of the sky to arcminute resolution with unprecedented sensitivity. CMB-S4 seeks to make a dramatic leap in sensitivity while observing across a broad range of largely unprotected spectrum which is increasingly being utilized for terrestrial and satellite transmissions. Fundamental aspects of CMB instrument technology leave them vulnerable to radio frequency interference (RFI) across a wide range of frequencies, including frequencies outside of their observing bands. Ground-based CMB instruments achieve their extraordinary sensitivities by deploying large focal planes of superconducting bolometers to extremely dry, high-altitude sites, with large fractional bandwidths, wide fields of view, and years of integration time. Suitable observing sites have historically offered significant protection from RFI, both naturally through their extremely remote locations as well as through restrictions on local emissions. Since the coupling mechanisms are complex, “safe” levels or frequencies of emission that would not interfere with CMB measurements cannot always be determined through straightforward calculations. We discuss models of interference for various types of RFI relevant to CMB-S4, mitigation strategies, and the potential impacts on survey sensitivity.
The Simons Array is a set of three millimeter-wavelength telescopes in the Atacama Desert in northern Chile. It is designed to measure the polarization of the cosmic microwave background caused by density perturbations, gravitational lensing, and primordial gravitational waves. Polarbear-2b (PB-2b) is the receiver that will be mounted onto the Paul Simons Telescope, the second Simons Array telescope. Each pixel in the PB-2b focal plane has a broadband sinuous antenna coupled to transition-edge sensor (TES) bolometers. In all, there are more than 7,500 antenna-coupled TES bolometers which are biased and read out using a digital frequency-domain multiplexing framework. We implement a multiplexing factor of 40 with resonator frequencies ranging from 1.6 MHz to 4.6 MHz. These resonators are connected to superconducting quantum interference device arrays that provide a signal amplification stage. We present Polarbear-2b detector and readout characterization results from in-lab testing that enabled the deployment of PB-2b to Chile in March 2020.
The Simons Array upgrades the POLARBEAR experiment, which measures the cosmic microwave background from the Atacama Desert in Chile, with three newly developed receivers. Each receiver has 7,588 transition-edge sensor bolometers with a raw data rate of approximately 20 MB/s. This significantly increased data rate required us to develop a new data-acquisition (DAQ) and data-management system. As the network bandwidth from our observatory to our data-storage sites outside Chile is not high enough to send all the raw data, we compress the raw data on-site. The expected yearly compressed data rate is approximately 60 TB from each receiver. We have also developed a new housekeeping DAQ system. The new housekeeping DAQ system is a distributed system to handle the various newly added monitoring systems and to better understand our instruments and environments. Those data can also be fetched by another module for real-time monitoring of our instrument from all over the world with latencies on the order of minutes. We deployed the first receiver in late 2018 and started the commissioning of the DAQ system. The DAQ system has been working without significant problems and already accumulates a considerable amount of the new receiver data from the commissioning observations. In this presentation, we summarize and report the status of the new systems.
The Simons Observatory (SO) will make precision temperature and polarization measurements of the cosmic
microwave background (CMB) using a series of telescopes which will cover angular scales between 1 arcminute
and tens of degrees, contain over 40,000 detectors, and sample frequencies between 27 and 270 GHz. SO will
consist of a six-meter-aperture telescope coupled to over 20,000 detectors along with an array of half-meter
aperture refractive cameras, coupled to an additional 20,000+ detectors. The unique combination of large and
small apertures in a single CMB observatory, which will be located in the Atacama Desert at an altitude of
5190 m, will allow us to sample a wide range of angular scales over a common survey area. SO will measure
fundamental cosmological parameters of our universe, find high redshift clusters via the Sunyaev-Zeldovich effect,
constrain properties of neutrinos, and seek signatures of dark matter through gravitational lensing. The complex
set of technical and science requirements for this experiment has led to innovative instrumentation solutions
which we will discuss. The large aperture telescope will couple to a cryogenic receiver that is 2.4 m in diameter
and over 2 m long, creating a number of interesting technical challenges. Concurrently, we are designing an array
of half-meter-aperture cryogenic cameras which also have compelling design challenges. We will give an overview
of the drivers for and designs of the SO telescopes and the cryogenic cameras that will house the cold optical
components and detector arrays.
The Cosmic Microwave Background (CMB) has provided an invaluable source of information about the universe we live in. However, much information is yet to be gained. For instance, information about the cosmological parameters of dark energy, inflation, and the neutrino sector is nearly guaranteed to provide revolutionary results in upcoming CMB experiments.
The current most popular detector technology, TES bolometers, finds a challenge in its low-noise readout, which requires a per-detector strong voltage bias while being able to sense O(10 aW/rtHz) fluctations in incident power. Frequency-multiplexed (fMUX) readout has been demonstrated to great success with an O(10) multiplexing factor, and is currently being implemented with an O(100) multiplexing factor for SPT-3G and POLARBEAR-2. We are developing a series of improvements that will greatly simplify the fMUX readout architecture, improve performance, and increase the multiplexing factor.
I will present results on a lossless method of fMUX detector bias that simplifies the readout architecture, as well as an effort to radically change and further simplify the readout architecture by moving the 4K DC SQUID to the sub-Kelvin stage.
POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first two seasons of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. The Simons Array expands POLARBEAR to include an additional two telescopes with next-generation POLARBEAR-2 multi-chroic receivers, observing at 95, 150, 220, and 270 GHz.
The POLARBEAR-2A focal plane has 7,588 transition-edge sensor bolometers, read out with frequency-division multiplexing, with 40 frequency channels within the readout bandwidth of 1.5 to 4.5 MHz. The frequency channels are defined by a low-loss lithographed aluminum spiral inductor and interdigitated capacitor in series with each bolometer, creating a resonant frequency for each channel's unique voltage bias and current readout. Characterization of the readout includes measuring resonant peak locations and heights and fitting to a circuit model both above and below the bolometer superconducting transition temperature. This information is used determine the optimal detector bias frequencies and characterize stray impedances which may affect bolometer operation and stability. The detector electrical characterization includes measurements of the transition properties by sweeping in temperature and in voltage bias, measurements of the bolometer saturation power, as well as measuring and removing any biases introduced by the readout circuit. We present results from the characterization, tuning, and operation of the fully integrated focal plane and readout for the first POLARBEAR-2 receiver, POLARBEAR-2A, during its pre-deployment integration run.
POLARBEAR-2 is a new receiver system, which will be deployed on the Simons Array telescope platform, for the measurement of Cosmic Microwave Background (CMB) polarization. The science goals with POLARBEAR-2 are to characterize the B-mode signal both at degree and sub-degree angular-scales. The degree-scale polarization data can be used for quantitative studies on inflation, such as the reconstruction of the energy scale of inflation. The sub-degree polarization data is an excellent tracer of large-scale structure in the universe, and will lead to precise constraints on the sum of the neutrino masses. In order to achieve these goals, POLARBEAR-2 employs 7588 polarization-sensitive antenna-coupled transition-edge sensor (TES) bolometers on the focal plane cooled to 0.27K with a three-stage Helium sorption refrigerator, which is ~6 times larger array over the current receiver system. The large TES bolometer array is read-out by an upgraded digital frequency-domain multiplexing system capable of multiplexing 40 bolometers through a single superconducting quantum interference device (SQUID).
The first POLARBEAR-2 receiver, POLARBEAR-2A is constructed and the end-to-end testing to evaluate the integrated performance of detector, readout, and optics system is being conducted in the laboratory with various types of test equipments. The POLARBEAR-2A is scheduled to be deployed in 2018 at the Atacama desert in Chile. To further increase measurement sensitivity, two more POLARBEAR-2 type receivers will be deployed soon after the deployment (Simons Array project). The Simons Array will cover four frequency bands at 95GHz, 150GHz, 220GH and 270GHz for better control of the foreground signal. The projected constraints on a tensor-to-scalar ratio (amplitude of inflationary B-mode signal) is σ(r=0.1) = $6.0 \times 10^{-3}$ after foreground removal ($4.0 \times 10^{-3}$ (stat.)), and the sensitivity to the sum of the neutrino masses when combined with DESI spectroscopic galaxy survey data is 40 meV at 1-sigma after foreground removal (19 meV(stat.)).
We will present an overview of the design, assembly and status of the laboratory testing of the POLARBEAR-2A receiver system as well as the Simons Array project overview.
The Simons Observatory (SO) is an upcoming experiment that will study temperature and polarization fluctuations in the cosmic microwave background (CMB) from the Atacama Desert in Chile. SO will field both a large aperture telescope (LAT) and an array of small aperture telescopes (SATs) that will observe in six bands with center frequencies spanning from 27 to 270 GHz. Key considerations during the SO design phase are vast, including the number of cameras per telescope, focal plane magnification and pixel density, in-band optical power and camera throughput, detector parameter tolerances, and scan strategy optimization. To inform the SO design in a rapid, organized, and traceable manner, we have created a Python-based sensitivity calculator with several state-of-the-art features, including detector-to-detector optical white-noise correlations, a handling of simulated and measured bandpasses, and propagation of low-level parameter uncertainties to uncertainty in on-sky noise performance. We discuss the mathematics of the sensitivity calculation, the calculator's object-oriented structure and key features, how it has informed the design of SO, and how it can enhance instrument design in the broader CMB community, particularly for CMB-S4.
Y. Inoue, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. Dobbs, A. Ducout, R. Dünner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, G. Fuller, A. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. Holzapfel, Y. Hori, L. Howe, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. Kaufman, K. Kazemzadeh, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M. Le Jeune, A. Lee, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, K. Mizukami, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. Raum, G. Rebeiz, C. Reichardt, P. Richards, C. Ross, K. Rotermund, Y. Segawa, B. Sherwin, I. Shirley, P. Siritanasak, N. Stebor, R. Stompor, J. Suzuki, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. Teply, A. Tikhomirov, T. Tomaru, N. Whitehorn, A. Zahn, O. Zahn
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision σ(r) > 0:01, and the sum of neutrino masses, Σmz, with σ(Σmv) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.
LiteBIRD is a next generation satellite aiming for the detection of the Cosmic Microwave Background (CMB) B-mode polarization imprinted by the primordial gravitational waves generated in the era of the inflationary universe. The science goal of LiteBIRD is to measure the tensor-to-scaler ratio r with a precision of δr < 10-3♦, offering us a crucial test of the major large-single-field slow-roll inflation models. LiteBIRD is planned to conduct an all sky survey at the sun-earth second Lagrange point (L2) with an angular resolution of about 0.5 degrees to cover the multipole moment range of 2 ≤ ℓ ≤ 200. We use focal plane detector arrays consisting of 2276 superconducting detectors to measure the frequency range from 40 to 400 GHz with the sensitivity of
3.2 μK·arcmin. including the ongoing studies.
N. Stebor, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, S. Beckman, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. Dobbs, A. Ducout, R. Dunner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, T. Fujino, G. Fuller, A. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. Holzapfel, Y. Hori, L. Howe, Y. Inoue, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. Kaufman, K. Kazemzadeh, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M. Le Jeune, A. Lee, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. Raum, G. Rebeiz, C. Reichardt, P. Richards, C. Ross, K. Rotermund, Y. Segawa, B. Sherwin, I. Shirley, P. Siritanasak, L. Steinmetz, R. Stompor, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. Teply, A. Tikhomirov, T. Tomaru, B. Westbrook, N. Whitehorn, A. Zahn, O. Zahn
The Simons Array is a next generation cosmic microwave background (CMB) polarization experiment whose science target is a precision measurement of the B-mode polarization pattern produced both by inflation and by gravitational lensing. As a continuation and extension of the successful POLARBEAR experimental program, the Simons Array will consist of three cryogenic receivers each featuring multichroic bolometer arrays mounted onto separate 3.5m telescopes. The first of these, also called POLARBEAR-2A, will be the first to deploy in late 2016 and has a large diameter focal plane consisting of dual-polarization dichroic pixels sensitive at 95 GHz and 150 GHz. The POLARBEAR-2A focal plane will utilize 7,588 antenna-coupled superconducting transition edge sensor (TES) bolometers read out with SQUID amplifiers using frequency domain multiplexing techniques. The next two receivers that will make up the Simons Array will be nearly identical in overall design but will feature extended frequency capability. The combination of high sensitivity, multichroic frequency coverage and large sky area available from our mid-latitude Chilean observatory will allow Simons Array to produce high quality polarization sky maps over a wide range of angular scales and to separate out the CMB B-modes from other astrophysical sources with high fidelity. After accounting for galactic foreground separation, the Simons Array will detect the primordial gravitational wave B-mode signal to r > 0.01 with a significance of > 5σ and will constrain the sum of neutrino masses to 40 meV (1σ) when cross-correlated with galaxy surveys. We present the current status of this funded experiment, its future, and discuss its projected science return.
For the next generation of Cosmic Microwave Background (CMB) experiments, kilopixel arrays of Transition Edge Sensor (TES) bolometers are necessary to achieve the required sensitivity and their science goals. We are developing read-out electronics for POLARBEAR-2 CMB experiment, which multiplexes 32-TES bolometers through a single superconducting quantum interface device (SQUID). To increase both the bandwidth of the SQUID electronics and the multiplexing factor, we are modifying cold wiring and developing LC filters, and a low-inductance superconducting cable. Using these components, we will show frequency domain multiplexing up to 3 MHz.
The Simons Array is an expansion of the POLARBEAR cosmic microwave background (CMB) polarization experiment currently observing from the Atacama Desert in Northern Chile. This expansion will create an array of three 3.5m telescopes each coupled to a multichroic bolometric receiver. The Simons Array will have the sensitivity to produce a ≥ 5σ detection of inationary gravitational waves with a tensor-to-scalar ratio r ≥ 0:01, detect the known minimum 58 meV sum of the neutrino masses with 3σ confidence when combined with a next-generation baryon acoustic oscillation measurement, and make a lensing map of large-scale structure over the 80% of the sky available from its Chilean site. These goals require high sensitivity and the ability to extract the CMB signal from contaminating astrophysical foregrounds; these requirements are met by coupling the three high-throughput telescopes to novel multichroic lenslet-coupled pixels each measuring CMB photons in both linear polarization states over multiple spectral bands. We present the status of this instrument already under construction, and an analysis of its capabilities.
Y. Inoue, N. Stebor, P. A. Ade, Y. Akiba, K. Arnold, A. Anthony, M. Atlas, D. Barron, A. Bender, D. Boettger, J. Borrilll, S. Chapman, Y. Chinone, A. Cukierman, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, A. Gilbert, N. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. Holzapfel, Y. Hori, G. Jaehnig, A. Jaffe, N. Katayama, B. Keating, Z. Kermish, Reijo Keskitalo, T. Kisner, M. Le Jeune, A. Lee, E. Leitch, E. Linder, F. Matsuda, T. Matsumura, X. Meng, H. Morii, M. Myers, M. Navaroli, H. Nishino, T. Okamura, H. Paar, J. Peloton, D. Poletti, G. Rebeiz, C. Reichardt, P. Richards, C. Ross, D. Schenck, B. Sherwin, P. Siritanasak, G. Smecher, M. Sholl, B. Steinbach, R. Stompor, A. Suzuki, J. Suzuki, S. Takada, S. Takakura, T. Tomaru, B. Wilson, A. Yadav, H. Yamaguchi, O. Zahn
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment for B-mode detection. The PB-2 receiver has a large focal plane and aperture that consists of 7588 transition edge sensor (TES) bolometers at 250 mK. The receiver consists of the optical cryostat housing reimaging lenses and infrared filters, and the detector cryostat housing TES bolometers. The large focal plane places substantial requirements on the thermal design of the optical elements at the 4K, 50K, and 300K stages. Infrared filters and lenses inside the optical cryostat are made of alumina for this purpose. We measure basic properties of alumina, such as the index of refraction, loss tangent and thermal conductivity. All results meet our requirements. We also optically characterize filters and lenses made of alumina. Finally, we perform a cooling test of the entire optical cryostat. All measured temperature values satisfy our requirements. In particular, the temperature rise between the center and edge of the alumina infrared filter at 50 K is only 2:0 ± 1:4 K. Based on the measurements, we estimate the incident power to each thermal stage.
POLARBEAR-2 is a next-generation receiver for precision measurements of polarization of the cosmic microwave background, scheduled to deploy in 2015. It will feature a large focal plane, cooled to 250 milliKelvin, with 7,588 polarization-sensitive antenna-coupled transition edge sensor bolometers, read-out with frequency domain multiplexing with 32 bolometers on a single SQUID amplifier. We will present results from testing and characterization of new readout components, integrating these components into a scaled-down readout system for validation of the design and technology.
POLARBEAR-2 is a ground based cosmic microwave background (CMB) radiation experiment observing from Atacama, Chile. The science goals of POLARBEAR-2 are to measure the CMB polarization signals originating from the inflationary gravity-wave background and weak gravitational lensing. In order to achieve these science goals, POLARBEAR-2 employs 7588 polarization sensitive transition edge sensor bolometers at observing fre quencies of 95 and 150 GHz with 5.5 and 3.5 arcmin beam width, respectively. The telescope is the off-axis Gregorian, Huan Tran Telescope, on which the POLARBEAR-1 receiver is currently mounted. The polarimetry is based on modulation of the polarized signal using a rotating half-wave plate and the rotation of the sky. We present the developments of the optical and polarimeter designs including the cryogenically cooled refractive optics that achieve the overall 4 degrees field-of-view, the thermal filter design, the broadband anti-reflection coating, and the rotating half-wave plate.
K. Arnold, P. A. Ade, A. Anthony, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. Dobbs, J. Errard, G. Fabbian, D. Flanigan, G. Fuller, A. Ghribi, W. Grainger, N. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. Holzapfel, J. Howard, P. Hyland, A. Jaffe, B. Keating, Z. Kermish, T. Kisner, M. Le Jeune, A. Lee, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, N. Miller, X. Meng, H. Morii, S. Moyerman, M. Myers, H. Nishino, H. Paar, E. Quealy, C. Reichardt, P. Richards, C. Ross, A. Shimizu, C. Shimmin, M. Shimon, M. Sholl, P. Siritanasak, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki, T. Tomaru, C. Tucker, O. Zahn
The POLARBEAR Cosmic Microwave Background (CMB) polarization experiment is currently observing from the Atacama Desert in Northern Chile. It will characterize the expected B-mode polarization due to gravitational lensing of the CMB, and search for the possible B-mode signature of inflationary gravitational waves. Its 250 mK focal plane detector array consists of 1,274 polarization-sensitive antenna-coupled bolometers, each with an associated lithographed band-defining filter. Each detector’s planar antenna structure is coupled to the telescope’s optical system through a contacting dielectric lenslet, an architecture unique in current CMB experiments. We present the initial characterization of this focal plane.
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment observing at Atacama plateau in Chile. PB-2 is designed to improve the sensitivity to measure the CMB B-mode polarization by upgrading the current POLARBEAR-1 receiver that is currently mounted on the Huan Tran telescope. The improvements in PB-2 include, i) the dual band observations at 95 GHz and 150 GHz in each pixel using an sinuous antenna, ii) the increase of the total number of detectors, 7588 Al-Ti bilayer transition-edge sensor (TES) bolometers, iii) the bath temperature of bolometers at 100mK in the second phase of observation (300mK in the first phase.) With the expected sensitivity of 5.7 μK √ s, PB-2 is sensitive to a tensor-to-scalar ratio, r, of 0.01 at 95% confidence level (CL) and constrains the sum of neutrino masses as 90meV by PB-2 alone and 40meV by combining PB-2 and Planck at 68% CL. We schedule to deploy in 2014.
Zigmund Kermish, Peter Ade, Aubra Anthony, Kam Arnold, Darcy Barron, David Boettger, Julian Borrill, Scott Chapman, Yuji Chinone, Matt Dobbs, Josquin Errard, Giulio Fabbian, Daniel Flanigan, George Fuller, Adnan Ghribi, Will Grainger, Nils Halverson, Masaya Hasegawa, Kaori Hattori, Masashi Hazumi, William Holzapfel, Jacob Howard, Peter Hyland, Andrew Jaffe, Brian Keating, Theodore Kisner, Adrian Lee, Maude Le Jeune, Eric Linder, Marius Lungu, Frederick Matsuda, Tomotake Matsumura, Xiaofan Meng, Nathan Miller, Hideki Morii, Stephanie Moyerman, Mike Myers, Haruki Nishino, Hans Paar, Erin Quealy, Christian Reichardt, Paul Richards, Colin Ross, Akie Shimizu, Meir Shimon, Chase Shimmin, Mike Sholl, Praween Siritanasak, Helmuth Spieler, Nathan Stebor, Bryan Steinbach, Radek Stompor, Aritoki Suzuki, Takayuki Tomaru, Carole Tucker, Oliver Zahn
We present the design and characterization of the POLARBEAR experiment. POLARBEAR will measure the polarization of the cosmic microwave background (CMB) on angular scales ranging from the experiment’s 3.5’ beam size to several degrees. The experiment utilizes a unique focal plane of 1,274 antenna-coupled, polarization sensitive TES bolometers cooled to 250 milliKelvin. Employing this focal plane along with stringent control over systematic errors, POLARBEAR has the sensitivity to detect the expected small scale B-mode signal due to gravitational lensing and search for the large scale B-mode signal from inflationary gravitational waves. POLARBEAR was assembled for an engineering run in the Inyo Mountains of California in 2010 and was deployed in late 2011 to the Atacama Desert in Chile. An overview of the instrument is presented along with characterization results from observations in Chile.
We present a method of cross-calibrating the polarization angle of a polarimeter using Bicep Galactic observations.
Bicep was a ground based experiment using an array of 49 pairs of polarization sensitive bolometers
observing from the geographic South Pole at 100 and 150 GHz. The Bicep polarimeter is calibrated to ±0.01
in cross-polarization and less than ±0.7° in absolute polarization orientation. Bicep observed the temperature
and polarization of the Galactic plane (R.A = 100° ~ 270° and Dec. = -67° ~ -48°). We show that the
statistical error in the 100 GHz Bicep Galaxy map can constrain the polarization angle offset of Wmap W band
to 0.6° ± 1.4°. The expected 1σ errors on the polarization angle cross-calibration for Planck or EPIC are 1.3°
and 0.3° at 100 and 150 GHz, respectively. We also discuss the expected improvement of the Bicep Galactic
field observations with forthcoming Bicep2 and Keck observations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.