The Earth’s atmosphere is comprised of turbulent layers that result in speckled and blurry images from ground-based visible and infrared observations. Adaptive Optics (AO) systems are employed to measure the perturbed wavefront with a wavefront sensor (WFS) and correct for these distortions with a deformable mirror. Therefore, understanding and characterising the atmosphere is crucial for the design and functionality of AO systems. One parameter for characterizing the atmosphere is the atmospheric coherence time, which is a function of the effective wind velocity of the atmosphere. This parameter dictates how fast the AO system needs to correct for the atmosphere. If not fast enough, phenomena such as the wind butterfly effect can occur, hindering high-contrast coronographic imaging. This effect is a result of fast, strong, high-altitude turbulent layers. This paper presents two methods for estimating the effective wind velocity, using pseudo-open loop WFS slopes. The first method uses a spatial-temporal covariance map and the second uses the power spectral density of the defocus term. We show both simulated results and preliminary results from the Gemini Planet Imager AO telemetry.
The Gemini Planet Imager (GPI) is a high contrast imaging instrument that aims to detect and characterize extrasolar planets. GPI is being upgraded to GPI 2.0, with several subsystems receiving a re-design to improve its contrast. To enable observations on fainter targets and increase performance on brighter ones, one of the upgrades is to the adaptive optics system. The current Shack-Hartmann wavefront sensor (WFS) is being replaced by a pyramid WFS with an low-noise electron multiplying CCD (EMCCD). EMCCDs are detectors capable of counting single photon events at high speed and high sensitivity. In this work, we characterize the performance of the HNü 240 EMCCD from Nüvü Cameras, which was custom-built for GPI 2.0. Through our performance evaluation we found that the operating mode of the camera had to be changed from inverted-mode (IMO) to non-inverted mode (NIMO) in order to improve charge diffusion features found in the detector’s images. Here, we characterize the EMCCD’s noise contributors (readout noise, clock-induced charges, dark current) and linearity tests (EM gain, exposure time) before and after the switch to NIMO.
The Gemini Planet Imager (GPI) is a high-contrast imaging instrument designed to directly detect and characterise young, Jupiter-mass exoplanets. After six years of operation at the Gemini South Telescope in Chile, the instrument is being upgraded and moved to the Gemini North Telescope in Hawaii as GPI 2.0. Several improvements have been made to the adaptive optics (AO) system as part of this upgrade. This includes replacing the current Shack-Hartmann wavefront sensor with a pyramid wavefront sensor (PWFS) and a custom EMCCD. These changes will increase GPI’s sky coverage by accessing fainter targets, improving corrections on fainter stars and allowing faster and ultra-low latency operations on brighter targets. The PWFS subsystem was independently built and tested to verify its performance before being integrated into the GPI 2.0 instrument. This paper will present the pre-integration performance test results, including pupil image quality, throughput and linearity without modulation.
The Gemini Planet Imager (GPI) is a high-contrast imaging instrument designed to directly detect and characterize young, Jupiter-mass exoplanets. After six years of operation at Gemini South in Chile, the instrument is being upgraded and relocated to Gemini North in Hawaii as GPI 2.0. GPI helped establish that Jovian-mass planets have a higher occurrence rate at smaller separations, motivating several sub-system upgrades to obtain deeper contrasts (up to 20 times improvement to the current limit), particularly at small inner working angles. This enables access to additional science areas for GPI 2.0, including low-mass stars, young nearby stars, solar system objects, planet formation in disks, and planet variability. The necessary instrumental changes required toenable these new scientific goals are to (i) the adaptive optics system, by replacing the current Shack-Hartmann Wavefront Sensor (WFS) with a pyramid WFS and a custom EMCCD, (ii) the integral field spectrograph, by employing a new set of prisms to enable an additional broadband (Y-K band) low spectral resolution mode, as well as replacing the pupil viewer camera with a faster, lower noise C-RED2 camera (iii) the calibration interferometer, by upgrading the low-order WFS used for internal alignment and on-sky target tracking with a C-RED2 camera and replacing the calibration high-order WFS used for measuring and correcting non-common path aberrations with a self coherent camera, (iv) the apodized-pupil Lyot coronagraph designs and (v) the software, to enable high-efficiency queue operations at Gemini North. GPI 2.0 is expected to go on-sky in early 2024. Here I will present the new scientific goals, the key upgrades, the current status and the latest timeline for operations.
The Earth’s turbulent atmosphere results in speckled and blurred images of astronomical objects when observed by ground based visible and near-infrared telescopes. Adaptive optics (AO) systems are employed to reduce these atmospheric effects by using wavefront sensors (WFS) and deformable mirrors. Some AO systems are not fast enough to correct for strong, fast, high turbulence wind layers leading to the wind butterfly effect, or wind-driven halo, reducing contrast capabilities in coronagraphic images. Estimating the effective wind speed of the atmosphere allows us to calculate the atmospheric coherence time. This is not only an important parameter to understand for site characterization but could be used to help remove the wind butterfly in post processing. Here we present a method for estimating the atmospheric effective wind speed from spatio-temporal covariance maps generated from pseudo open-loop (POL) WFS data. POL WFS data is used as it aims to reconstruct the full wavefront information when operating in closed-loop. The covariance maps show how different atmospheric turbulent layers traverse the telescope. Our method successfully recovered the effective wind speed from simulated WFS data generated with the soapy python library. The simulated atmospheric turbulence profiles consist of two turbulent layers of ranging strengths and velocities. The method has also been applied to Gemini Planet Imager (GPI) AO WFS data. This gives insight into how the effective wind speed can affect the wind-driven halo seen in the AO image point spread function. In this paper, we will present results from simulated and GPI WFS data.
The Gemini Planet Imager (GPI) is a high contrast imaging instrument designed to directly detect and characterize young Jupiter-mass exoplanets. After six years of operation at Gemini South in Chile, the instrument is being upgraded and moved to Gemini North in Hawaii as GPI 2.0. As part of this upgrade, several improvements will be made to the adaptive optics (AO) system. This includes replacing the current Shack-Hartmann wavefront sensor (WFS) with a pyramid wavefront sensor (PWFS) and a custom EMCCD. These changes are expected to increase GPI’s sky coverage by accessing fainter targets, improving corrections on fainter stars and allowing faster and ultra-low latency operations on brighter targets. The PWFS subsystem is being independently built and tested to verify its performance before its integration into the GPI 2.0 instrument. In this paper, we will present the design and pre-integration test plan of the PWFS.
GPI is a facility instrument designed for the direct detection and characterization of young Jupiter mass exoplanets. GPI has helped establish that the occurrence rate of Jovian planets peaks near the snow line (~3 AU), and falls off toward larger separations. This motivates an upgrade of GPI to achieve deeper contrasts, especially at small inner working angles, to extend GPI’s operating range to fainter stars, and to broaden its scientific capabilities, all while leveraging its historical success. GPI was packed and shipped in 2022, and is undergoing a major science-driven upgrade. We present the status and purpose of the upgrades including an EMCCD-based pyramid wavefront sensor, broadband low spectral resolution prisms, new apodized-pupil Lyot coronagraph designs, upgrades of the calibration wavefront sensor and increased queue operability. We discuss the expected performance improvements and enhanced science capabilities to be made available in 2024.
The Gemini Planet Imager (GPI) is a dedicated high-contrast imaging facility designed for the direct detection and characterization of young Jupiter mass exoplanets. After six yrs of operation at Gemini South, GPI has helped establish that Jovian planets are rare at wide separations, but have higher occurrence rates at small separations. This motivates an upgrade of GPI to achieve deeper contrasts, especially at small inner working angles, while leveraging its current capabilities. GPI has been funded to undergo a major science-driven upgrade as part of a relocation to Gemini North (GN). Gemini plans to remove GPI at the end of 2020A. We present the status of the proposed upgrades to GPI including a EMCCD-based pyramid wavefront sensor, broadband low spectral resolution prisms and new apodized-pupil Lyot coronagraph designs. We discuss the expected performance improvements in the context of GPI 2.0's enhanced science capabilities which are scheduled to be made available at GN in 2022.
After more than six years of successful operation at Gemini South, the Gemini Planet Imager (GPI) will be moved to Gemini-North. During this move, the instrument will undergo a series of upgrades. One of these upgrades will be the installation of a new pyramid wavefront sensor (PWFS) with a low noise EMCCD detector that will replace the current Shack-Hartmann WFS. This upgrade is expected to significantly increase the sky coverage of GPI, providing increased level of AO correction and access to fainter targets. The new PWFS will be assembled on a standalone bench that will be aligned and tested independent of the GPI to ensure the required performance is achieved. Once the performance is verified, the completed subassembly will be installed in place of the current WFS hardware during the final integration into the GPI. In this paper, we will present the final design of the new GPI PWFS. Included will be a description of the optical performance simulations completed and their results, and a detailed overview of the opto-mechanical design of the new PWFS bench.
During its move from the mountaintop of Cerro Pachon in Chile to the peak of Mauna Kea in Hawaii, the Gemini Planet Imager will receive various upgrades, including a pyramid wavefront sensor. As a non-linear sensor, a standard approach to linearize the response of the pyramid is induce a rapid circular modulation of the beam around the pyramid tip, trading off sensitivity for robustness during high turbulence. Using high temporal resolution Fourier Optics based simulations, we investigate phase reconstruction approaches that attempt to optimize the performance of the sensor with a dynamically adjustable modulation parameter. We have studied the linearity and gain stability of the sensor under different modulation and seeing conditions, and the ability of the sensor to correct non-common-path errors. We will also show performance estimates which includes a comparative analysis of the atmospheric columns above the two mountains, as well as the Error Transfer Function of the two systems.
An explanation for the origin of asymmetry along the preferential axis of the point spread function (PSF) of an AO system is developed. When phase errors from high-altitude turbulence scintillate due to Fresnel propagation, wavefront amplitude errors may be spatially offset from residual phase errors. These correlated errors appear as asymmetry in the image plane under the Fraunhofer condition. In an analytic model with an open-loop AO system, the strength of the asymmetry is calculated for a single mode of phase aberration, which generalizes to two dimensions under a Fourier decomposition of the complex illumination. Other parameters included are the spatial offset of the AO correction, which is the wind velocity in the frozen flow regime multiplied by the effective AO time delay and propagation distance or altitude of the turbulent layer. In this model, the asymmetry is strongest when the wind is slow and nearest to the coronagraphic mask when the turbulent layer is far away, such as when the telescope is pointing low toward the horizon. A great emphasis is made about the fact that the brighter asymmetric lobe of the PSF points in the opposite direction as the wind, which is consistent analytically with the clarification that the image plane electric field distribution is actually the inverse Fourier transform of the aperture plane. Validation of this understanding is made with observations taken from the Gemini Planet Imager, as well as being reproducible in end-to-end AO simulations.
A semi analytic framework for simulating the effects of atmospheric seeing in Adaptive Optics systems on an 8-m telescope is developed with the intention of understanding the origin of the wind-butterfly, a characteristic twolobed halo in the PSF of AO imaging. Simulations show that errors in the compensated phase on the aperture due to servo-lag have preferential direction orthogonal to the direction of wind propagation which, when Fourier Transformed into the image plane, appear with their characteristic lemniscate shape along the wind direction. We develop a metric to quantify the effect of this aberration with the fractional standard deviation in an annulus centered around the PSF, and use telescope pointing to correlate this effect with data from an atmospheric models, the NOAA GFS. Our results show that the jet stream at altitudes of 100-200 hPa (equivalently 10-15 km above sea level) is highly correlated (13.2σ) with the strong butterfly, while the ground wind and other layers are more or less uncorrelated.
POLARBEAR-2 is a new receiver system, which will be deployed on the Simons Array telescope platform, for the measurement of Cosmic Microwave Background (CMB) polarization. The science goals with POLARBEAR-2 are to characterize the B-mode signal both at degree and sub-degree angular-scales. The degree-scale polarization data can be used for quantitative studies on inflation, such as the reconstruction of the energy scale of inflation. The sub-degree polarization data is an excellent tracer of large-scale structure in the universe, and will lead to precise constraints on the sum of the neutrino masses. In order to achieve these goals, POLARBEAR-2 employs 7588 polarization-sensitive antenna-coupled transition-edge sensor (TES) bolometers on the focal plane cooled to 0.27K with a three-stage Helium sorption refrigerator, which is ~6 times larger array over the current receiver system. The large TES bolometer array is read-out by an upgraded digital frequency-domain multiplexing system capable of multiplexing 40 bolometers through a single superconducting quantum interference device (SQUID).
The first POLARBEAR-2 receiver, POLARBEAR-2A is constructed and the end-to-end testing to evaluate the integrated performance of detector, readout, and optics system is being conducted in the laboratory with various types of test equipments. The POLARBEAR-2A is scheduled to be deployed in 2018 at the Atacama desert in Chile. To further increase measurement sensitivity, two more POLARBEAR-2 type receivers will be deployed soon after the deployment (Simons Array project). The Simons Array will cover four frequency bands at 95GHz, 150GHz, 220GH and 270GHz for better control of the foreground signal. The projected constraints on a tensor-to-scalar ratio (amplitude of inflationary B-mode signal) is σ(r=0.1) = $6.0 \times 10^{-3}$ after foreground removal ($4.0 \times 10^{-3}$ (stat.)), and the sensitivity to the sum of the neutrino masses when combined with DESI spectroscopic galaxy survey data is 40 meV at 1-sigma after foreground removal (19 meV(stat.)).
We will present an overview of the design, assembly and status of the laboratory testing of the POLARBEAR-2A receiver system as well as the Simons Array project overview.
POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first two seasons of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. The Simons Array expands POLARBEAR to include an additional two telescopes with next-generation POLARBEAR-2 multi-chroic receivers, observing at 95, 150, 220, and 270 GHz.
The POLARBEAR-2A focal plane has 7,588 transition-edge sensor bolometers, read out with frequency-division multiplexing, with 40 frequency channels within the readout bandwidth of 1.5 to 4.5 MHz. The frequency channels are defined by a low-loss lithographed aluminum spiral inductor and interdigitated capacitor in series with each bolometer, creating a resonant frequency for each channel's unique voltage bias and current readout. Characterization of the readout includes measuring resonant peak locations and heights and fitting to a circuit model both above and below the bolometer superconducting transition temperature. This information is used determine the optimal detector bias frequencies and characterize stray impedances which may affect bolometer operation and stability. The detector electrical characterization includes measurements of the transition properties by sweeping in temperature and in voltage bias, measurements of the bolometer saturation power, as well as measuring and removing any biases introduced by the readout circuit. We present results from the characterization, tuning, and operation of the fully integrated focal plane and readout for the first POLARBEAR-2 receiver, POLARBEAR-2A, during its pre-deployment integration run.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.