In order to investigate industrial applications of synchrotron radiation, Hyogo Prefecture is constructing a synchrotron radiation (SR) ring at the SPring-8 site. It will operate at an electron energy of 1.5 GeV. In September, 1998, the ring will be commissioned when the SPring-8 injector begins feeding electrons into it. We developed a beam line for EUVL under the industrial applications program. In addition, we are developing a three-spherical- mirror system for EUVL. The specifications of the exposure tool target the 0.1-micrometers generation on the SIA road map. This tool consists of illumination optics, a scanning and alignment mechanism, 3-aspherical-mirror optics, and a load- lock chamber for exchanging wafers. The exposure tool is installed in a thermal chamber located at the end of the beamline. Using this system, we plan to develop a 0.1-micrometers process and fabricate MOS devices with feature sizes of 0.1- micrometers and below.
W-B4C multilayers with single d-spacing period of 2.2 nm have been deposited on 330 long by 50 mm wide Si substrates to be used as monochromators for a computed tomography application. Using magnetron sputtering and a substrate masking technique, d-spacing uniformities of +/- 0.86% and +/- 1% were obtained over a 180 mm by 100 mm area for 2.2 nm and 4.2 nm d-spacings respectively. Two separate processes were used to coat the 330 mm long substrate, wherein half of the substrate was coated in each process. A similar process was used to deposit depth graded W-B4C supermirrors on Si and CVD SiC substrates for a beamline pre-mirror application. The 330 mm long by 50 mm wide Si and 300 mm long by 79 mm wide SiC substrates were coated with 20 bi-layer supermirrors with d-spacings ranging from 4.4 nm to 10.8 nm. For an angiography research application laterally graded W-B4C multilayers were deposited on 150 mm by 120 mm silicon substrates. A strong nonlinear d-spacing gradient, from 1.6 nm to 3.8 nm was achieved across the mirror's surface in an attempt to provide uniform intensity over the reflected area. The maximum and minimum d-spacing gradient was 0.06 nm/mm and 0.003 nm/mm, respectively. We measured and mapped the d-spacing gradient using a custom Cu-Ka diffraction system. The measured d-spacings were within +/- 1.5% of the intended d-spacings.
Imaging x-ray microscopes currently under development at the Marshall Space Flight Center utilize multilayer x-ray/EUV optical systems and structural components similar to those developed for normal incidence imaging solar x-ray telescopes. The Water Window Imaging X-Ray Microscope is specifically designed to operate at x-ray wavelengths within the `water window' regime, wherein water is relatively transmissive and carbon is highly absorptive. This important natural property of the interaction of x-rays with matter should permit this microscope to sharply delineate carbon based structures within living cells. The ability to image living cells in aqueous physiological environments, with high spatial resolution and high contrast, may afford advantages not available with conventional microscopes and make possible non-invasive strategies for examining living tumor cells without the need of stains or exogeneous chemicals that can produce limiting artifacts. The Water Window Imaging X-Ray Microscope represents a `spinoff' of multilayer x-ray telescope technology. This paper reviews the multilayer x-ray telescope developments which led to this x-ray microscope research. It considers the design, fabrication, optical assembly, alignment, and testing of the prototype microscopes and provides the results of recent studies of ultrahigh resolution photographic films and the design of high reflectivity multilayer coatings for applications in the water window.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.