The Giant Magellan Telescope (GMT) primary mirror subsystem (M1S) consists of seven 8.4m diameter borosilicate primary mirrors that must be maintained at the ambient nighttime air temperature as it changes throughout the observing night to prevent seeing effects at the mirror surface. Additionally, thermal gradients internal to the mirrors must be minimized to prevent figure errors caused by distortions of the mirror due to the non-zero thermal expansion coefficient of the glass. To address these requirements, the GMT M1S team is fabricating a prototype thermal control system design that consists of a sub-critical refrigeration system utilizing high pressure (~30 to ~60 bar) CO2 (R744) refrigerant. This paper describes the design and status of the M1 Subsystem Thermal Control (M1STC).
GMTO has developed a full-scale prototype of the cell that can house an 8.4-meter borosilicate mirror. This test cell is populated with all the active support control hardware and a mass simulator that simulates the mirror weight and the moment of inertia. GMTO has implemented the control software with all the core features needed to operate the active support system. A series of tests have been carried out to verify the functions, performance, and safety of the active support control system. The tests were carried out at several different orientations of the cell to demonstrate that the active support system works with the changing zenith angle and location of the mirror on the telescope mount. This paper describes the results of important safety and dynamic response tests of the active support system.
We present the preliminary design of GMagAO-X, the first-light high-contrast imager planned for the Giant Magellan Telescope. GMagAO-X will realize the revolutionary increase in spatial resolution and sensitivity provided by the 25 m GMT. It will enable, for the first time, the spectroscopic characterization of nearby potentially habitable terrestrial exoplanets orbiting late-type stars. Additional science cases include: reflected light characterization of mature giant planets; measurement of young extrasolar giant planet variability; characterization of circumstellar disks at unprecedented spatial resolution; characterization of benchmark stellar atmospheres at high spectral resolution; and mapping of resolved objects such as giant stars and asteroids. These, and many more, science cases will be enabled by a 21,000 actuator extreme adaptive optics system, a coronagraphic wavefront control system, and a suite of imagers and spectrographs. We will review the science-driven performance requirements for GMagAO-X, which include achieving a Strehl ratio of 70% at 800 nm on 8th mag and brighter stars, and post-processed characterization at astrophysical flux-ratios of 1e-7 at 4 lambda/D (26 mas at 800 nm) separation. We will provide an overview of the resulting mechanical, optical, and software designs optimized to deliver this performance. We will also discuss the interfaces to the GMT itself, and the concept of operations. We will present an overview of our end-to-end performance modeling and simulations, including the control of segment phasing, as well as an overview of prototype lab demonstrations. Finally, we will review the results of Preliminary Design Review held in February, 2024.
Each of the seven primary mirror cell in the GMT contains over 225 EtherCAT slaves in the cell, leading to a nightmare of cabling. Optimization of the initial construction and ongoing maintenance of the cells requires reduced complexity of wiring in the cell. Employing the concept of Power over EtherCAT and a star configuration, the resulting the EtherCAT Power and Communications Hub design reduces the wiring in the cell by 2/3, while additionally providing centralized power management and diagnosis of each actuator communications link. The design consists of an EtherCAT slave to allow the central control system to monitor and control the slaves attached to the hub, and power control circuits to provide and monitor power to each slave. In addition to providing a significant reduction in wiring complexity, the hub serves as an additional control point for power to each support actuator, enhancing mirror safety through redundant control of the actuators. This paper describes the motivation driving the requirements, the resulting requirements and design, and test results of the prototype EtherCAT and Power Hubs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.